Please check the examination details below before entering your candidate information
Candidate surname
Pearson Edexcel
Level 1/Level 2 GCSE $(9-1)$

Thursday 7 November 2019

Morning (Time: 1 hour 30 minutes)	Paper Reference 1MA1/2H

Mathematics
Paper 2 (Calculator) Higher Tier

N
 YORKSHIRE
 MATHS TUTOR

You must have: Ruler graduated in centimetres and millimetres, protractor, pair of compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided - there may be more space than you need.
- You must show all your working.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- Calculators may be used.
- If your calculator does not have a π button, take the value of π to be 3.142 unless the question instructs otherwise.

Information

- The total mark for this paper is 80
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Answer ALL questions.

Write your answers in the spaces provided.
You must write down all the stages in your working.
1 The table shows some information about the weights of 50 potatoes.

Weight $(w$ grams $)$	Frequency
$10<w \leqslant 20$	6
$20<w \leqslant 30$	21
$30<w \leqslant 40$	13
$40<w \leqslant 50$	7
$50<w \leqslant 60$	3

Iveta drew this frequency polygon for the information in the table.
The frequency polygon is not fully correct.

Write down two things that are wrong with the frequency polygon.
1 First cross should be at frequency 6 , not 8

2

 on

3. First and last points

$$
\text { Total for Question } 1 \text { is } 2 \text { marks) }
$$

should ret be comected

2 The length of a pencil is 128 mm correct to the nearest millimetre.
Complete the error interval for the length of the pencil.

3 Tom and Adam have a total of 240 stamps.
The ratio of the number of Tom's stamps to the number of Adam's stamps is $3: 7$
Tom buys some stamps from Adam.
The ratio of the number of Tom's stamps to the number of Adam's stamps is now $3: 5$
How many stamps does Tom buy from Adam?
You must show all your working.

$$
\begin{aligned}
& 240 \\
& 3: 7 \\
& \text { (} \times 24 \text {) } \\
& 72: 168 \\
& \pi: A \\
& \text { Then T:A } \\
& 3: 5 \\
& 240 \div 8=30 \\
& (x 30) \\
& 90: 150
\end{aligned}
$$

$$
90-72=18
$$

4 Each person in a fitness club is going to get a free gift.
Stan is going to order the gifts.
Stan takes a sample of 50 people in the fitness club.
He asks each person to tell him the gift they would like.
The table shows information about his results.

Gift	Number of people
sports bag	17
gym towel	7
headphones	11
voucher	15

There are 700 people in the fitness club.

(i) Work out how many sports bags Stan should order.

$$
\frac{17}{50} \times 700=238
$$

(ii) Write down any assumption you made and explain how this could affect your answer.
 representative of the 700

5 Here are six graphs.

B
C

D

E

Write down the letter of the graph that could have the equation
(a) $y=x^{3}$
)
(b) $y=\frac{1}{x}$

6 The nth term of a sequence is $2 n^{2}-1$
The nth term of a different sequence is $40-n^{2}$
Show that there is only one number that is in both of these sequences.

$$
\begin{array}{ll}
2 n^{2}-1 & 1,7,17,31,49,71,97 \\
40-n^{2} & 39,36,31,24,15,4,-9
\end{array}
$$

$$
31 \text { is in bott }
$$

as first sequence in increasing and second sequence decreasing, 31 is the only number in bott

7 Work out $\left(3.42 \times 10^{-7}\right) \div\left(7.5 \times 10^{-6}\right)$ Give your answer in standard form.

$$
=0.6456
$$

$$
4.56 \times 10^{-2}
$$

8 The number of days, d, that it will take to build a house is given by

$$
d=\frac{720}{n}
$$

where n is the number of workers used each day.
Ali's company will take 40 days to build the house.
Hayley's company will take 30 days to build the house.
Hayley's company will have to use more workers each day than Ali's company.
How many more?

$$
\begin{gathered}
\text { Ali } 40=\frac{720}{n} \quad n=\frac{720}{40}=18 \\
H^{4}=\frac{720}{30}=24 \\
24-18=0
\end{gathered}
$$

9 The diagram shows a cube and a cuboid.

The total surface area of the cube is equal to the total surface area of the cuboid.
Janet says,
"The volume of the cube is equal to the volume of the cuboid."
Is Janet correct?
You must show how you get your answer.
Surface area of cuboid

$$
6 \times 8 \times 2=96 \mathrm{~cm}^{2}
$$

$$
6 \times 18 \times 2=216 \mathrm{~cm}^{2}
$$

$$
18 \times 8 \times 2=\frac{288 \mathrm{~cm}^{2}}{-600 \mathrm{~cm}^{2}}
$$

If surface area of cube $=600 \mathrm{~cm}^{2}$ $600 \div 6=100 \mathrm{~cm}^{2}$ each face $\therefore 10 \times 10 \times 10=1000 \mathrm{~cm}^{3}$ volume

Volume of cuboid $=6 \times 8 \times 18$ $=864 \mathrm{~cm}^{3}$

Janet is incorrect

$$
\begin{aligned}
& \text { Volume of cube }=100 \mathrm{~m}^{3} \text {. } \\
& \text { Volume of cuboid }=86 \text { mam }
\end{aligned}
$$

10 Make k the subject of the formula $y=\sqrt{2 m-k}$

$$
\begin{aligned}
& y^{2}=2 m-k \\
& k+y^{2}=2 m \\
& k=2 m-y^{2}
\end{aligned}
$$

(Total for Question 10 is 2 marks)

11 Megan grows potatoes.
The box plot below shows information about the weights of Megan's potatoes.

Megan says that half of her potatoes weigh less than 50 grams each.
(a) Is Megan correct?

Give a reason for your answer.

not so

Amy also grows potatoes.
The box plot below shows information about the weights of Amy's potatoes.

(b) Compare the distribution of the weights of Megan's potatoes with the distribution of the weights of Amy's potatoes.
The Median for Megan's is higher
than the median for Amy's.

The IQR for Megan is greater than the IQR for Amy.

12 The diagram shows triangle $A B C$.

$A D C$ and $D E B$ are straight lines.
$A D=4.4 \mathrm{~cm}$
$B C=8.6 \mathrm{~cm}$
E is the midpoint of $D B$.
Angle $C D B=90^{\circ}$
Angle $D C B=40^{\circ}$
Work out the size of angle $E A D$.
Give your answer correct to 1 decimal place.
You must show all your working.

$32 \cdot 1 \quad \circ$

13 Sakira invested $£ 3550$ in a savings account for 3 years.
She was paid 2.6% per annum compound interest for each of the first 2 years.
She was paid $R \%$ interest for the third year.
Sakira had $£ 3819.21$ in her savings account at the end of the 3 years.
Work out the value of R.
Give your answer correct to 1 decimal place.

$$
\begin{array}{r}
100+2.6 \\
=1 \\
=5819.21
\end{array}
$$

$$
\begin{aligned}
& x=\frac{3819.21}{3550 \times 1.026^{2}} \\
& x=1.02199 \\
& x=100=102.19980 / 0 \\
& =2=2.2010\left(1 d_{p}\right)
\end{aligned}
$$

14 Sadia is going to buy a new car.
For the car, she can choose one body colour, one roof colour and one wheel type.
She can choose from

> 19 different body colours
> 25 different wheel types

The total number of ways Sadia can choose the body colour and the roof colour and the wheel type is 3325

Work out the number of different roof colours that Sadia can choose from.

$$
\begin{gathered}
19 \times 25=475 \\
3325 \div 475=7
\end{gathered}
$$

15 Expand and simplify $(3 x+2)(2 x+1)(x-5)$

$$
\begin{aligned}
&(3 x+2)\left(2 x^{2}-10 x+x-5\right) \\
&=(3 x+2)\left(2 x^{2}-9 x-5\right) \\
&= 6 x^{3}-27 x^{2}-15 x \\
&+4 x^{2}-18 x-10 \\
&= 6 x^{3}-23 x^{2}-33 x-10
\end{aligned}
$$

16 Marek has 9 cards.
There is a number on each card.

Mare takes at random two of the cards.
He works out the product of the numbers on the two cards.
Work out the probability that the product is an even number.
even if one is even OR both even

$$
1-\frac{5}{9} \times \frac{4}{8}=1-\frac{20}{72}
$$

$$
\frac{52}{72}
$$

A and B are points on a circle with centre O.
$C A D$ is the tangent to the circle at A.
$B O D$ is a straight line.
Angle $O D A=32^{\circ}$
Work out the size of angle $C A B$.
You must show all your working.
$\angle O A D=90^{\circ}$ (angle between tangent and radius)

$$
B O=O A \text { (radii) }
$$

$$
\begin{gathered}
\angle O B A=\angle O A B=y \quad(\text { iscsceler } \\
\text { triangle } O A B \text {) } \\
2 y+90+32=180 \\
2 y=180-90-32 \\
2 y=58 \\
y=29 \\
\therefore \angle C A B=x=90-29=61^{\circ}
\end{gathered}
$$

(Total for Question 17 is 3 marks)

18 The histogram gives information about the heights, in metres, of the trees in a park. The histogram is incomplete.

20% of the trees in the park have a height between 10 metres and 12.5 metres.
None of the trees in the park have a height greater than 25 metres.
Complete the histogram.

$$
\begin{aligned}
& 1.2 \times 2.5=3 \\
& 2 \times 2.5=5 \\
& 5 \times 2 \cdot 8=14 \\
& 12.5 \times 0.8=10 \\
& 32 \\
& 8 \div 2.5=3 \cdot 2(f . d)
\end{aligned}
$$

(Total for Question 18 is 3 marks)

19 The diagram shows a hemisphere with diameter 8.4 cm .

Work out the volume of the hemisphere.
Give your answer correct to 3 significant figures. $\quad r=4.2$

$$
\begin{aligned}
V= & \frac{1}{2} \times \frac{4}{3} \times \pi \times 4.2^{3} \\
= & 155.1695
\end{aligned}
$$

$20 d=\frac{1}{8} c^{3}$
$c=10.9$ correct to 3 significant figures.
By considering bounds, work out the value of d to a suitable degree of accuracy.
Give a reason for your answer.

$$
\begin{aligned}
c_{u} & =10.95 \\
c_{L} & =10.85 \\
d_{u} & =\frac{1}{8} \times 10.95^{3}=164.1165 \\
d_{L}= & \frac{1}{8} \times 10.85^{3}=159.6611
\end{aligned}
$$

$$
\text { du and } d_{s} \text { bott round bo }
$$

21 Here is a speed-time graph for a train journey between two stations.
The journey took 100 seconds.

(a) Calculate the time taken by the train to travel half the distance between the two stations. You must show all your working.

$$
\begin{aligned}
& \text { Total Distana }=\frac{1}{2}(50+100) \times+12
\end{aligned}
$$

(b) Compare the acceleration of the train during the first part of its journey with the acceleration of the train during the last part of its journey.

$$
\begin{aligned}
& S_{\operatorname{tar}}=\frac{\pi 12}{30}=\frac{\pi 6}{15} \mathrm{~ms} s^{-2} \quad \text { acalerating } \\
& E_{n d}=\frac{\pi 6}{20}=-\frac{16}{10} \mathrm{~ms}^{-2} \quad \text { decelerating }
\end{aligned}
$$

22 The number of rabbits on a farm at the end of month n is P_{n}
The number of rabbits at the end of the next month is given by $P_{n+1}=1.2 P_{n}-50$
At the end of March there are 200 rabbits on the farm.
(a) Work out how many rabbits there will be on the farm at the end of June.

$$
\begin{aligned}
& P_{\text {march }}=200 \quad \text { Calculate } \\
& P_{\text {april }}=1.200= \\
& P_{\text {may }}=178 \\
& P_{\text {anNe }}=163.6 \\
&=164 \text { (nearest rabbit) }
\end{aligned}
$$

(3)
(b) Considering your results in part (a), suggest what will happen to the number of rabbits on the farm after a long time.

23 The diagram shows a parallelogram.

The area of the parallelogram is greater than $15 \mathrm{~cm}^{2}$
(a) Show that $2 x^{2}-21 x+40<0$
area parallelogram $=2 \times \triangle A B C$

$$
\begin{align*}
&=2 \times \frac{1}{2} \times(2 x-1)(10-x) \sin 150^{\circ} \\
&=\frac{1}{2}(2 x-1)(10-x) \\
& \therefore \quad \frac{1}{2}(2 x-1)(10-x)>15 \\
& \frac{1}{2}\left(20 x-2 x^{2}-10+x\right)>15 \\
& \frac{1}{2}\left(-2 x^{2}+21 x-10\right)>15 \tag{3}\\
&-2 x^{2}+21 x-10>30
\end{align*}
$$

(b) Find the range of possible values of x.

$$
\begin{array}{r}
2 x^{2}-21 x+40<0 \\
\text { (as required) }
\end{array}
$$

$$
(2 x-5)(x-8)<0
$$

$$
\text { Either } 2 x-5=0 \text { or } x-8=0
$$

$$
x=2.5 \quad x=8
$$

$$
\begin{equation*}
2.5<x<8 \tag{3}
\end{equation*}
$$

Square $A B C D$ is transformed by a combined transformation of a reflection in the line $x=-1$ followed by a rotation.

Under the combined transformation, two vertices of the square $A B C D$ are invariant.
Describe fully one possible rotation.

(Total for Question 24 is 2 marks)

25 The straight line L has equation $3 x+2 y=17$
The point A has coordinates $(0,2)$
The straight line \mathbf{M} is perpendicular. to \mathbf{L} and passes through A.
Line \mathbf{L} crosses the y-axis at the point B.
Lines \mathbf{L} and \mathbf{M} intersect at the point C.
Work out the area of triangle $A B C$.
You must show all your working.

$$
\begin{gathered}
2 y=-3 x+17 \\
y=-\frac{3}{2} x+\frac{17}{2} \\
y r a d i e n t M=\frac{2}{3} \\
y-y 1=m(x-x, 1) \\
y-2=\frac{2}{3}(x-0) \\
y-2=\frac{2}{3} x \\
y=\frac{2}{3} x+2
\end{gathered}
$$

L meets y-axis $(x=0)$ at B

$$
y=\frac{17}{2} \quad B\left(0, \frac{17}{2}\right)
$$

L and M intersect at C

$$
-\frac{3}{2} x+\frac{17}{2}=\frac{2}{3} x+2
$$

$$
\frac{17}{2}-2=\frac{2}{3} x+\frac{3}{2} x
$$

$$
6 \cdot s=\frac{13}{6} x
$$

$$
D C=\frac{6 \times 6.5}{13}=3
$$

Area $\triangle A B C$ $=\frac{1}{2} \times 6.5 \times 3$ when $x=3, y=\frac{2}{3} \times 3+2$

$c(3,4) \quad y=4$

$$
9.75
$$

sa. units
(Total for Question 25 is 5 marks)

