(a) Given that
2log(4 — x) = log(x + 8)
show that

xX-9x+8=0

(b) (i) Write down the roots of the equation

X-9x+8=0

(3)


















Z . By taking logarithms of both sides, solve the equation

giving the value of p to one decimal place.

(3)
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(a) show that I

, Gieh dx is independent of k,

(4)

Ik
(b) show that I dx is inversely proportional to k.
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4_, - Aresearch engineer is testing the effectiveness of the braking system of a car when it is
driven in wet conditions.

The engineer measures and records the braking distance, d metres, when the brakes are
applied from a speed of Vkmh™'.

Graphs of d against Vand log d against log V' were plotted.

The results are shown below together with a data point from each graph.
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Figure 5 Figure 6
(a) Explain how Figure 6 would lead the engineer to believe that the braking distance
should be modelled by the formula
d= kI’ where k and » are constants
with k= 0.017
(3)
Using the information given in Figure 5, with k= 0.017
(b) find a complete equation for the model giving the value of # to 3 significant figures.
(3)
Sean is driving this car at 60 kmh™' in wet conditions when he notices a large puddle in
the road 100m ahead. It takes him 0.8 seconds to react before applying the brakes.
(e} Use your formula to find out if Sean will be able to stop before reaching the puddle.
(3)
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In a simple model, the value, £V, of a car depends on its age, 1, in years.
The following information is available for car A

e its value when new is £20000
e its value after one year is £16000

(a) Use an exponential model to form, for car A, a possible equation linking ¥ with 1.
A — (4)

The value of car 4 is monitored over a 10-year period.
Its value after 10 years is £2000

(b) Evaluate the reliability of your model in light of this information.

(2)
The following information is available for car B
¢ it has the same value, when new, as car 4
o its value depreciates more slowly than that of car A
(c) Explain how you would adapt the equation found in (a) so that it could be used to
maodel the value of car B. .
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O‘ ~  The curve with equation y=3 x 2 meets the curve with equation y= 15— 27" at the point P.

Find, using algebra, the exact x coordinate of P. @)
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1O, A quantity of ethanol was heated until it reached boiling point.

The temperature of the ethanol, #°C, at time ¢ seconds after heating began, is modelled
by the equation

=4 — Be 0

where 4 and B are positive constants.

Given that
e the initial temperature of the ethanol was 18°C
e after 10 seconds the temperature of the ethanol was 44°C

(a) find a complete equation for the model, giving the values of 4 and B
to 3 significant figures.

(4)
Ethanol has a boiling point of approximately 78°C

(b) Use this information to evaluate the model.
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V|- Given that a > b > 0 and that a and b satisfy the equation

loga - logh = log(a — b)

(a) show that
b.'!
o=
b=-1
(3)
(b) Write down the full restriction on the value of b, explaining the reason for this restriction.
(2)
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\ Z. . A new smartphone was released by a company.

The company monitored the total number of phones sold, #, at time ¢ days after the

—

phone was released.

The company observed that, during this time,

the rate of increase of n was proportional to »

Use this information to write down a suitable equation for n in terms of £.

(You do not need to evaluate any unknown constanis in your equation.)

(2)






















