|

MATHS TUTOR

Relative to a fixed origin O

the point 4 has position vectar (2§ + 3j — 4k),

the point & has position vector (4i — 2j + 3k),

and the pomnt C has position vector {al + 5§ — 2Kk), where a is a constant and a < 0
D is the point such that AB = BD,

(a) Fimd the position vector of 13,

(2)
Lriven | i 4

(b) find the value of a.
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Z . Relative to a fixed origin O
e point 4 has position vector 2i + 5j — 6k <
e point B has position vector 3i — 3j — 4k =
e point C has position vector 2i = 16j + 4K =

F a1

(a) Find .ﬁ

(2)
(b) Show that quadrilateral OABC is a trapezium, giving reasons for your answer.
(2)
b — =
o A& - @3 ek N-(2  cSi-bh)
(2l 16y rak - (o2, bl )

= e

_— 2 —

%
T —

— (R, + ¥k

oft = 2¢ - [6f =%R =

- 'L'jr"lxi 1.. = [ ?‘-'.'Gl..":-JL L Fa1t-3
- T A - O= and AR
e P{:‘{-ﬂjl 1[-“’-1-\ —
i‘d‘ ,_‘ J— ?i -i—-l%
F i 5 s \

e - = N\ C i
2 —j6y T4 |-

__-,:. —— e —_—

bt (oo = {2 et = 23469

| fi&d"‘ | = \l 117511-?_:‘- = b

Ca s Darz) ! el i 1o & | t'i_dm':‘:llﬁ?i
. ! ki w38 { | ) ) 1] l “—

Y FT'?S A wm__

rat SGmne &Cz,e,D S o < S & *b'f'a.PQsz


































































































































4 . Relative to a fixed origin, points P, () and R have position vectors p, q and r respectively.

CGiiven that
e P, and R lie on a straight line
o () lies one third of the way from P to R

show that
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Figure 7 shows a sketch of triangle (4B,

The point C is such that OC = 204 .

The point M is the midpoint of AB.

The straight line through C and M cuts OF at the point V.
Given Od=a and OF = b

(a) Find CM in terms of a and b

(2)
(b) Show that ON = (2—-—;—3.) a+ %ih, where 4 is a scalar constant.
(2)
(c) Hence prove that ON:NB = 2:1
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