3.

Figure 2

A small ball is projected with speed Ums-1 from a point O at the top of a vertical cliff.

The point O is 25 m vertically above the point N which is on horizontal ground.

The ball is projected at an angle of 45° above the horizontal.

The ball hits the ground at a point A, where $AN = 100 \,\mathrm{m}$, as shown in Figure 2.

The motion of the ball is modelled as that of a particle moving freely under gravity.

Using this initial model,

(a) show that U = 28

- (6)
- (b) find the greatest height of the ball above the horizontal ground NA.
- (3)

In a refinement to the model of the motion of the ball from O to A, the effect of air resistance is included.

This refined model is used to find a new value of U.

- (c) How would this new value of U compare with 28, the value given in part (a)?
- (1)
- (d) State one further refinement to the model that would make the model more realistic.
 - (1) 100 = U cos 45° x t (1)

s = ut + 2 at2 4 sin 45 x t + 2 (-9.8 U = 100 costs xt , sin45xt-COS 45 100 - 4.9 L2 5.050762723 -5.0507627 100 5.050762723 x cos 45 28 as required 28 sin 45 ms-1 0 ms-1 -9.8 ms-2 S = 2:0 m Height above ground = 20+25=45

new value of u would
have to be larger than 28
to compensate for wind
registance.
d) Account for effects of wind
OF .
Use more accurate value for g
Account for spin of the ball

Figure 3

The points A and B lie 50 m apart on horizontal ground.

At time t = 0 two small balls, P and Q, are projected in the vertical plane containing AB.

Ball P is projected from A with speed $20 \,\mathrm{m\,s^{-1}}$ at 30° to AB.

Ball Q is projected from B with speed $um s^{-1}$ at angle θ to BA, as shown in Figure 3.

At time t = 2 seconds, P and Q collide.

Until they collide, the balls are modelled as particles moving freely under gravity.

(a) Find the velocity of P at the instant before it collides with Q.

(6)

- (b) Find
 - (i) the size of angle θ,
 - (ii) the value of u.

(6)

(c) State one limitation of the model, other than air resistance, that could affect the accuracy of your answers.

(1)

a	A	v = y +at
)	v = 20 sin 30°+ -9.8x2
	2	V= -9.6 ms-1
·va	U = 20 sin 30°	Nertical motion
	0 2 2 1	narizantal velocity
	t = 2	= 2.000330° = 10 JJ ms
0	erall velocity	= (-9.6) + (10.15) at t= 2
	at this tim	e vertical height at collision
	S = 20	sin 30° x Z + 2 x -9.8 x 2°
	9 = 0	5 - 4 m

b) for A morizontal motion
S=20ccs 30 x 2 = 20 \square m when they rollide
herizontal distance moved by B is 50-2015 m
for B u coso x 2 = 50-20\f30
Fre U= Usine
q = -9 t = 2
S=ut + 2 at 0.4 = 24 sin 6 + 5 x - 9.8 x 2 2
① gives u = 50-2053 Z cos €
sud in @ gives.
0.4 = 2(50-2013) sine -19.6
$\frac{0.4 + 19.6}{(50 - 2013)} = \frac{\tan 6}{6}$
u = 50-2013 12.6085ms
(i) $\Theta = 52.5^{\circ}$ (3 of) (ii) $y = 12.6 \text{ ms}^{-1}$ (3 of)
c) Wind is a limitation

Figure 4

A boy throws a ball at a target. At the instant when the ball leaves the boy's hand at the point A, the ball is 2 m above horizontal ground and is moving with speed U at an angle α above the horizontal.

In the subsequent motion, the highest point reached by the ball is 3 m above the ground. The target is modelled as being the point T, as shown in Figure 4.

The ball is modelled as a particle moving freely under gravity.

Using the model,

(a) show that
$$U^2 = \frac{2g}{\sin^2 \alpha}$$
.

(2)

The point T is at a horizontal distance of 20 m from A and is at a height of 0.75 m above the ground. The ball reaches T without hitting the ground.

(b) Find the size of the angle α

(9)

(c) State one limitation of the model that could affect your answer to part (b).

(1)

(d) Find the time taken for the ball to travel from A to T.

(3)

a) horizontal motion (->)

constant horizontal velocity

S = U cos d x t ()

verticel motion ()

s = Im

U = u sin d

V = 0 (when highest point reached)

