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Note: % (or implied) is not needed for the middle three marks of question 2(a).




yt
| \%\
o] a b X
Figure 2
The curve shown in Figure 2 has equation y = Qxel) The finite region bounded by the
x+

curve, the x-axis and the linesx = gand x = b is shown shaded in Figure 2. This region is
rotated through 360° about the x-axis to generate a solid of revolution.

Find the volume of the solid generated. Express your answer as a single simplified
fraction, in terms of @ and b.
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Figure 1

Figure 1 shows part of the curve y =

- The region R is bounded by the curve,
V(1+4x)
the x-axis, and the lines x = 0 and x = 2, as shown shaded in Figure 1.

(a) Use integration to find the area of R.

C)
The region R is rotated 360° about the x-axis.

(b) Use integration to find the exact value of the volume of the solid formed.
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(@) Using the substitution x = 2 cos u, or otherwise, find the exact value of
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ji x V(@4 -x?) =
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Figure 3
Figure 3 shows a sketch of part of the curve with equation y = L‘ y DEReR
x(4—x%)*

The shaded region S, shown in Figure 3, is bounded by the curve, the x-axis and the lines with
equations x = 1 and x = \2. The shaded region S is rotated through 27 radians about the x-axis to
form a solid of revolution.

(b) Using your answer to part (a), find the exact volume of the solid of revolution formed.
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Figure 1

Figure 1 shows the curve with equation

{2 |
= I 220
g \/l3x2+4) g

The finite region S, shown shaded in Figure 1, is bounded by the curve, the x-axis and the

lngx=2

The region S is rotated 360° about the x-axis.

Use integration to find the exact value of the volume of the solid generated, giving your

answer in the form k In a, where k and a are constants.
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3.(a) Area Shaded = J 3sin(}) dx
0
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= e kcos (%) with k=1. | M1
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131
(Answer of 12 with no working scores MOAOAO.)
2n ) 5
(b) | Volume = I(Ssin (%) dx=9n Jsinz (2) dx e Iy S IV
0 Can be implied. Ignore limits.
s . L i Consideration of the Half Angle
[NB: cos2x =+1+2sin” x gives sin“x = T} Formula for sin? (%) or the i
*
[NB: cosx =+1+2sin? (%) gives sin®*(%) == ;"ﬂ Double Angle Formula
il
forsin® x
2% 1 .
- Volume = 9(x) j —COSX i Correct expression fgr Volume A1
2 Ignore limits and =.
]
g 2%
= —(n—) I(1—cosx) dx
2 4]
g(ﬁ) s Integrating to give tax+bsinX; | depM1 *;
= [x=sinx], Correct integration
k-kcosx — kx—ksinx | A1
9
= -2—n[(2n ~0) - (0-0)]
O gl Use of limits to give
- ?(211:) = 912 or 88.8264... either 9 12 or awrt 88.8 | A1€8°
Solution must be completely [6]
correct. No flukes allowed.
9 marks
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8. (a) Using the identity cos26 = 1 — 2sin20, find Jsinzé’de?.
)
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Figure 4

Figure 4 shows part of the curve C with parametric equations

-

x=tanf, y=2sin20, 0<O<

=

B . 1
The finite shaded region S shown in Figure 4 is bounded by C, the line x = NE) and the

x-axis. This shaded region is rotated through 27 radians about the x-axis to form a solid
of revolution. -

(b) Show that the volume of the solid of revolution formed is given by the integral
E o
k| sin“6do
0
where k is a constant.

)

(c) Hence find the exact value for this volume, giving your answer in the form
pn? + g3, where p and g are constants.
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Figure 1

A hollow hemispherical bowl is shown in Figure 1. Water is flowing into the bowl.
When the depth of the water is # m, the volume ¥'m’ is given by

V=%x'h2(3—4h), 0<h<0.25

(a) Find, in terms of 7, %% when 2 =0.1

)
Water flows into the bowl at a rate of SIE m’s™.
(b) Find the rate of change of 4, in ms™, when 4 = 0.1
2)
................................................................. e e
o) e s Lmh = VR
& 3

Leave
blank

O




Leave\
Question 3 continued e
@f dbh o db v
o t d V4 d k
d’\ﬂv = '_7_‘:_ ( ...iyq,g\ .......................................................... o
ot e - O Tem L S
dn a8
.................................. d\\( Cﬂ_’ i e |~ g Sl SRS
________________________________________________________________________________ By
B (TR \
...................................................................................... o\ '[1..11..\,\( S S
.......................... d&\ o \ - ’( I
N fpth - ak"  &co
................................... A e
T
________________ Y. S i S
Q3
-
(Total 6 marks) ;
7
Turn over

P 3 81 6 0 A0 7 2 4



e Joua 20132

Lcave\
blank
y A
Figure 3
Figure 3 shows a sketch of part of the curve with equation y = 1 — 2cos x, where x is
measured in radians. The curve crosses the x-axis at the point 4 and at the point B.
(a) Find, in terms of z, the x coordinate of the point 4 and the x coordinate of the point B.
&)
The finite region S enclosed by the curve and the x-axis is shown shaded in Figure 3. The
region S is rotated through 27z radians about the x-axis.
(b) Find, by integration, the exact value of the volume of the solid generated.
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Figure 1

Figure 1 shows the finite region R bounded by the x-axis, the y-axis, the line x = Z and
the curve with equation 2

1
y=sec(5x], ngé%

. 1
The table shows corresponding values of x and y for y = sec (E x}

4 n z
6 1 2

y 1 1.035276 ) ISHTI0) 1.414214

(a) Complete the table above giving the missing value of y to 6 decimal places.

)

(b) Using the trapezium rule, with all of the values of y from the completed table, find an
approximation for the area of R, giving your answer to 4 decimal places.

(€))

Region R is rotated through 2z radians about the x-axis.

(¢) Use calculus to find the exact volume of the solid formed.
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