4.

Attempts $V = \pi \int x^2 e^{2x} dx$

$$=\pi \left[\frac{x^2 e^{2x}}{2} - \int x e^{2x} dx \right]$$

$$= \pi \left[\frac{x^2 e^{2x}}{2} - \left(\frac{x e^{2x}}{2} - \int \frac{e^{2x}}{2} dx \right) \right]$$

M1

(M1 needs parts in the correct direction)

M1 A1

M1 A1√

M1A1 $\sqrt{1}$ refers to candidates $\int x e^{2x} dx$, but dependent on prev. M1

$$= \pi \left[\frac{x^2 e^{2x}}{2} - \left(\frac{x e^{2x}}{2} - \frac{e^{2x}}{4} \right) \right]$$

A1 cao

Substitutes limits 3 and 1 and subtracts to give... [dep. on second and third Ms]

dM1

=
$$\pi \left[\frac{13}{4} e^6 - \frac{1}{4} e^2 \right]$$
 or any correct exact equivalent.

A1

[Omission of $\,\pi\,$ loses first and last marks only]

[8]

June7

Question Number	Scheme		Marks
Aliter 2. (a)	Volume = $\pi \int_{\frac{1}{4}}^{\frac{1}{2}} \left(\frac{1}{3(1+2x)} \right)^2 dx = \pi \int_{\frac{1}{4}}^{\frac{1}{2}} \frac{1}{(3+6x)^2} dx$	Use of $V = \pi \int y^2 dx$. Can be implied. Ignore limits.	B1
Way 2	$= (\pi) \int_{-\frac{1}{4}}^{\frac{1}{2}} (3+6x)^{-2} dx$	Moving their power to the top. (Do not allow power of -1.) Can be implied. Ignore limits and π	M1
	$= (\pi) \left[\frac{(3+6x)^{-1}}{(-1)(6)} \right]_{-\frac{1}{4}}^{\frac{1}{2}}$	Integrating to give $\frac{\pm p(3+6x)^{-1}}{-\frac{1}{6}(3+6x)^{-1}}$	M1 A1
	$= (\pi) \left[-\frac{1}{6} (3+6x)^{-1} \right]_{-\frac{1}{4}}^{\frac{1}{2}}$		
	$= (\pi) \left[\left(\frac{-1}{6(6)} \right) - \left(\frac{-1}{6(\frac{3}{2})} \right) \right]$		
	$= \left(\pi\right) \left[-\frac{1}{36} - \left(-\frac{1}{9}\right) \right]$		
	$=\frac{\pi}{12}$	Use of limits to give exact values of $\frac{\pi}{12}$ or $\frac{3\pi}{36}$ or $\frac{2\pi}{24}$ or aef	A1 aef
			[5

Note: π is not needed for the middle three marks of question 2(a).

Jan e7

Question Number	Scheme		Marks
2. (a)	Volume = $\pi \int_{-\frac{1}{4}}^{\frac{1}{2}} \left(\frac{1}{3(1+2x)} \right)^2 dx = \frac{\pi}{9} \int_{-\frac{1}{4}}^{\frac{1}{2}} \frac{1}{(1+2x)^2} dx$	Use of $V = \pi \int y^2 dx$. Can be implied. Ignore limits.	B1
	$= \left(\frac{\pi}{9}\right) \int_{-\frac{1}{4}}^{\frac{1}{2}} (1+2x)^{-2} dx$	Moving their power to the top. (Do not allow power of -1.) Can be implied. Ignore limits and $\frac{\pi}{9}$	M1
	$= \left(\frac{\pi}{9}\right) \left[\frac{(1+2x)^{-1}}{(-1)(2)}\right]_{-\frac{1}{4}}^{\frac{1}{2}}$	Integrating to give $\frac{\pm p(1+2x)^{-1}}{-\frac{1}{2}(1+2x)^{-1}}$	M1 A1
	$= \left(\frac{\pi}{9}\right) \left[-\frac{1}{2} (1 + 2x)^{-1} \right]_{-\frac{1}{4}}^{\frac{1}{2}}$		
	$= \left(\frac{\pi}{9}\right) \left[\left(\frac{-1}{2(2)}\right) - \left(\frac{-1}{2(\frac{1}{2})}\right) \right]$		
	$=\left(\frac{\pi}{9}\right)\left[-\frac{1}{4}-(-1)\right]$		
	$=\frac{\pi}{12}$	Use of limits to give exact values of $\frac{\pi}{12}$ or $\frac{3\pi}{36}$ or $\frac{2\pi}{24}$ or aef	Al aef
(b)	From Fig.1, AB = $\frac{1}{2} - \left(-\frac{1}{4}\right) = \frac{3}{4}$ units		[5
	As $\frac{3}{4}$ units \equiv 3cm		
	then scale factor $k = \frac{3}{\left(\frac{3}{4}\right)} = 4$.		
	Hence Volume of paperweight = $(4)^3 \left(\frac{\pi}{12}\right)$	$(4)^3 \times (\text{their answer to part (a)})$	M1
	$V = \frac{16\pi}{3} \text{ cm}^3 = 16.75516 \text{ cm}^3$	$\frac{\frac{16\pi}{3} \text{ or awrt } 16.8}{\text{ or } \frac{64\pi}{12} \text{ or aef}}$	A1 [2
			[22

Note: $\frac{\pi}{9}$ (or implied) is not needed for the middle three marks of question 2(a).

Figure 2

The curve shown in Figure 2 has equation $y = \frac{1}{(2x+1)}$. The finite region bounded by the

curve, the x-axis and the lines x = a and x = b is shown shaded in Figure 2. This region is rotated through 360° about the x-axis to generate a solid of revolution.

Find the volume of the solid generated. Express your answer as a single simplified fraction, in terms of a and b.

 $Volume = x \int_{a}^{b} y^{2} dx$ $= x \int_{a}^{b} \frac{1}{(2x+1)^{2}} dx$ $= x \left(\frac{1}{2} \frac{1}{(2x+1)} + \frac{1}{2(2a+1)} \right)$ $= x \left(\frac{-1}{2(2b+1)} + \frac{1}{2(2a+1)} \right)$ $= x \left(\frac{-(2a+1) + (2b+1)}{(2a+1)(2b+1)} \right)$ $= x \left(\frac{(b-a)}{(2a+1)(2b+1)} \right)$

2.

Figure 1

Figure 1 shows part of the curve $y = \frac{3}{\sqrt{(1+4x)}}$. The region R is bounded by the curve, the x-axis, and the lines x = 0 and x = 2, as shown shaded in Figure 1.

(a) Use integration to find the area of R.

(4)

Leave

blank

The region R is rotated 360° about the x-axis.

(b) Use integration to find the exact value of the volume of the solid formed.

(5)

a)
$$y = 3(1+4xc)^{-1/2}$$

Area = $3\int_{0}^{2} (1+4xc)^{-1/2} dx$

$$= 3 \left[\frac{2}{4} \left(1 + 4x \right)^{4/2} \right]^{2}$$

$$= 3 \left(\frac{3}{2} - \frac{1}{2} \right) - 3$$

$$= \pi \int_{c}^{2} \left(\frac{3}{\sqrt{1+4x}} \right)^{2} dx$$

$$= \pi \int_0^1 \frac{q}{1+4\pi} dx$$

8. (a) Using the substitution $x = 2 \cos u$, or otherwise, find the exact value of

 $\int_{1}^{\sqrt{2}} \frac{1}{x^2 \sqrt{(4-x^2)}} \, \mathrm{d}x \, .$

(7)

Figure 3

Figure 3 shows a sketch of part of the curve with equation $y = \frac{4}{x(4-x^2)^{\frac{1}{4}}}$, 0 < x < 2.

The shaded region S, shown in Figure 3, is bounded by the curve, the x-axis and the lines with equations x = 1 and $x = \sqrt{2}$. The shaded region S is rotated through 2π radians about the x-axis to form a solid of revolution.

(b) Using your answer to part (a), find the exact volume of the solid of revolution formed.

(3)

TOTAL FOR PAPER: 75 MARKS

END

$$\frac{\delta \alpha}{du} = -2\sin u \qquad \lim_{x \to \infty} \frac{1}{4\cos^2 u} = -2\sin u \qquad \lim_{x \to \infty} \frac{1}{4\cos^2 u} = -2\sin u \qquad \lim_{x \to \infty} \frac{1}{4\cos^2 u} = -2\sin u \qquad \lim_{x \to \infty} \frac{1}{4\cos^2 u} = -2\sin u \qquad \lim_{x \to \infty} \frac{1}{4\cos^2 u} = -2\sin u \qquad \lim_{x \to \infty} \frac{1}{4\cos^2 u} = -2\sin^2 u \qquad \lim_{x \to \infty} \frac{1}{4\cos^2 u} = -\cos^2 u \qquad \lim_{x \to \infty} \frac{1}{4\cos^2 u$$

(b)
$$V = \pi \int_{1}^{\sqrt{2}} \left(\frac{4}{x(4-x^{2})^{1/4}} \right)^{2} dx$$

$$= 16 \pi \int_{1}^{\sqrt{2}} \left(\frac{4}{x(4-x^{2})^{1/4}} \right)^{2} dx$$

$$= 16 \pi \left(\sqrt{3} - 1 \right)$$

$$= 16 \pi \left(\sqrt{3} - 1 \right)$$
(a)

4.

Figure 1

Figure 1 shows the curve with equation

$$y = \sqrt{\left(\frac{2x}{3x^2 + 4}\right)}, \ x \geqslant 0$$

The finite region S, shown shaded in Figure 1, is bounded by the curve, the x-axis and the line x = 2

The region S is rotated 360° about the x-axis.

Use integration to find the exact value of the volume of the solid generated, giving your answer in the form $k \ln a$, where k and a are constants.

(5)

$$V = \pi \int_{0}^{2} dx$$

$$= \pi \int_{0}^{2} \left(\sqrt{\frac{2x}{3x^{2} + 4}} \right)^{2} dx$$

$$= \pi \int_{0}^{2} \frac{2x}{3x^{2} + 4} dx$$

$$= \pi \left[\frac{1}{3} \ln (3x^{2} + 4) \right]_{0}^{2}$$

$$= \pi \left[\frac{1}{3} \ln 16 - \frac{1}{3} \ln 4 \right]$$

Question Number	Scheme		Marks
3. (a)	Area Shaded = $\int_{0}^{2\pi} 3 \sin(\frac{x}{2}) dx$		
	$= \left[\frac{-3\cos\left(\frac{x}{2}\right)}{\frac{1}{2}}\right]_0^{2\pi}$	Integrating $3\sin\left(\frac{x}{2}\right)$ to give $k\cos\left(\frac{x}{2}\right)$ with $k \neq 1$. Ignore limits.	M1
	$= \left[-6\cos\left(\frac{x}{2}\right)\right]_0^{2\pi}$	$-6\cos\left(\frac{x}{2}\right) \text{ or } \frac{-3}{\frac{1}{2}}\cos\left(\frac{x}{2}\right)$	A1 oe.
	=[-6(-1)]-[-6(1)] = 6 + 6 = 12 (Answer of 12 with no working scores M0A0A0.)	<u>12</u>	A1 cao [3]
(b)	Volume = $\pi \int_{0}^{2\pi} \left(3\sin\left(\frac{x}{2}\right)\right)^2 dx = 9\pi \int_{0}^{2\pi} \sin^2\left(\frac{x}{2}\right) dx$	Use of $V = \pi \int y^2 dx$. Can be implied. Ignore limits.	M1
	$\begin{bmatrix} NB : \frac{\cos 2x = \pm 1 \pm 2 \sin^2 x}{2} & \text{gives } \sin^2 x = \frac{1 - \cos 2x}{2} \end{bmatrix}$ $\begin{bmatrix} NB : \frac{\cos x = \pm 1 \pm 2 \sin^2 \left(\frac{x}{2}\right)}{2} & \text{gives } \sin^2 \left(\frac{x}{2}\right) = \frac{1 - \cos x}{2} \end{bmatrix}$	Consideration of the Half Angle Formula for $\sin^2\left(\frac{x}{2}\right)$ or the Double Angle Formula for $\sin^2 x$	M1*
	$\therefore \text{Volume} = 9(\pi) \int_{0}^{2\pi} \left(\frac{1 - \cos x}{2} \right) dx$	Correct expression for Volume Ignore limits and π .	A1
	$=\frac{9(\pi)}{2}\int_{0}^{2\pi}\underbrace{(1-\cos x)}_{0}dx$		
	$=\frac{9(\pi)}{2}\left[\underline{x-\sin x}\right]_0^{2\pi}$	Integrating to give $\pm ax \pm b \sin x$; Correct integration $k - k \cos x \rightarrow kx - k \sin x$	depM1*;
	$=\frac{9\pi}{2}\big[(2\pi-0)-(0-0)\big]$		
	$=\frac{9\pi}{2}(2\pi)=\frac{9\pi^2}{2}$ or 88.8264	Use of limits to give either $9 \pi^2$ or awrt 88.8 Solution must be completely correct. No flukes allowed.	A1 cso
			9 marks

8. (a) Using the identity $\cos 2\theta = 1 - 2\sin^2\theta$, find $\int \sin^2\theta d\theta$.

Figure 4

Figure 4 shows part of the curve C with parametric equations

$$x = \tan \theta$$
, $y = 2\sin 2\theta$, $0 \le \theta < \frac{\pi}{2}$

The finite shaded region S shown in Figure 4 is bounded by C, the line $x = \frac{1}{\sqrt{3}}$ and the x-axis. This shaded region is rotated through 2π radians about the x-axis to form a solid of revolution.

(b) Show that the volume of the solid of revolution formed is given by the integral

$$k \int_0^{\frac{\pi}{6}} \sin^2 \theta \, d\theta$$

where k is a constant.

(5)

(c) Hence find the exact value for this volume, giving your answer in the form $p\pi^2 + q\pi\sqrt{3}$, where p and q are constants.

(3)

a)
$$\int \sin^2 \theta \, d\theta = \int \left[1 - \cos^2 \theta \, d\theta \right]$$

Question	Q	continu	٠,
Question	0	continue	2U

Volume of	Revolution	 TI	12	dx	10
		,	13	de	00

=
$$16x$$
 $\int \sin^2 \theta \, d\theta$ $x = 0$ $x = \sqrt{3}$
 $\tan \theta = 0$ $\tan \theta = \sqrt{3}$

(c)
$$V = 16x \left[\frac{e}{2} - \sin 2e\right]^{\frac{1}{2}}$$

$$=\frac{4\pi^{2}-2\pi 53}{3}$$
 $\rho=\frac{4}{3}$

(Total 10 marks)

TOTAL FOR PAPER: 75 MARKS

END

Q8

3.

Figure 1

A hollow hemispherical bowl is shown in Figure 1. Water is flowing into the bowl. When the depth of the water is h m, the volume V m³ is given by

$$V = \frac{1}{12} \pi h^2 (3 - 4h), \quad 0 \le h \le 0.25$$

(a) Find, in terms of π , $\frac{dV}{dh}$ when h = 0.1

(4)

Water flows into the bowl at a rate of $\frac{\pi}{800}$ m³s⁻¹.

(b) Find the rate of change of h, in m s⁻¹, when h = 0.1

(2)

a)
$$V = \frac{1}{4}\pi h^2 - \frac{1}{3}\pi h^3$$

$$\frac{dV}{dh} = \frac{1}{2}\pi h - \pi h^2$$

(h=0.1)

= 00047

6)

Question 3 continued

$$dL = 1$$
 $dt = 32$

Q3

Figure 3

Figure 3 shows a sketch of part of the curve with equation $y = 1 - 2\cos x$, where x is measured in radians. The curve crosses the x-axis at the point A and at the point B.

(a) Find, in terms of π , the x coordinate of the point A and the x coordinate of the point B. (3)

The finite region S enclosed by the curve and the x-axis is shown shaded in Figure 3. The region S is rotated through 2π radians about the x-axis.

(b) Find, by integration, the exact value of the volume of the solid generated.

a) y=0 $0=1-2\cos c$ $\cos 3x=\frac{1}{2}$ $x=\cos^{-1}(\frac{1}{2})=\frac{\pi}{3}$ and $\frac{5\pi}{3}$ A is $(\frac{\pi}{3},0)$ and B is $(\frac{5\pi}{3},0)$ b) Volume of revolution $\frac{\pi}{3}$ $\frac{$

6 b continued

$$= \pi \int_{3}^{\frac{5\pi}{3}} (1 - 4\cos 2x + 4\cos 2x) dx$$

$$= \pi \int_{3}^{\frac{5\pi}{3}} (1 - 4\cos 2x + 4(\frac{1}{2}\cos 2x + \frac{1}{2})) dx$$

$$= \pi \int_{3}^{\frac{5\pi}{3}} (1 - 4\cos x + 2\cos 2x + 2) dx$$

$$= \pi \int_{3}^{\frac{5\pi}{3}} (3 - 4\cos x + 2\cos 2x) dx$$

$$= \pi \left[(3\pi - 4\sin \frac{\pi}{3} + \sin 10\pi) - (\pi - 4\sin \frac{\pi}{3} + \sin 2\pi) \right]$$

$$= \pi \left[(5\pi - 4\sin \frac{\pi}{3} + \sin 10\pi) - (\pi - 4\sin \frac{\pi}{3} + \sin 2\pi) \right]$$

$$= \pi \left[(5\pi + 4\sqrt{3} - \sqrt{3}) - (\pi - 4\sqrt{3} + \sqrt{3}) \right]$$

$$= \pi \left[(3\sqrt{3} + 4\pi) \right]$$

3.

Figure 1

Figure 1 shows the finite region R bounded by the x-axis, the y-axis, the line $x = \frac{\pi}{2}$ and the curve with equation

$$y = \sec\left(\frac{1}{2}x\right), \quad 0 \leqslant x \leqslant \frac{\pi}{2}$$

The table shows corresponding values of x and y for $y = \sec\left(\frac{1}{2}x\right)$.

x	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
у	1	1.035276	1.154701	1.414214

(a) Complete the table above giving the missing value of y to 6 decimal places.

(1)

(b) Using the trapezium rule, with all of the values of y from the completed table, find an approximation for the area of R, giving your answer to 4 decimal places.

(3)

Region *R* is rotated through 2π radians about the *x*-axis.

(c) Use calculus to find the exact volume of the solid formed.

(4)

Area =
$$\frac{1}{2} \times \frac{\pi}{6} \left[1 + 1.414214 \right]$$

+ $2 \left(1.035276 + 1.154701 \right) \right]$
 ≈ 1.778709
 $\approx 1.7787 (4-dp)$

C)
$$Volume = TT \int_{-\infty}^{\infty} sec(\frac{1}{2}sc) dsc$$

$$= TT \left[2 tan(\frac{1}{2}x) \right]_{-\infty}^{\infty}$$

$$= TT \left(2 tan(\frac{\pi}{4}) - 0 \right)$$

$$= 2TT$$