4. With respect to a fixed origin O the lines l_1 and l_2 are given by the equations $$l_1: \mathbf{r} = \begin{pmatrix} 11\\2\\17 \end{pmatrix} + \lambda \begin{pmatrix} -2\\1\\-4 \end{pmatrix} \qquad l_2: \mathbf{r} = \begin{pmatrix} -5\\11\\p \end{pmatrix} + \mu \begin{pmatrix} q\\2\\2 \end{pmatrix}$$ Jan where λ and μ are parameters and p and q are constants. Given that l_1 and l_2 are perpendicular, (a) show that q = -3. Given further that l_1 and l_2 intersect, find - (b) the value of p, - (c) the coordinates of the point of intersection. (6)(2) (2) The point A lies on l_1 and has position vector $\begin{pmatrix} 9 \\ 3 \\ 13 \end{pmatrix}$. The point C lies on l_2 . Given that a circle, with centre C, cuts the line l_1 at the points A and B, (d) find the position vector of B. (3) **4.** The line l_1 has vector equation $$\mathbf{r} = \begin{pmatrix} -6\\4\\-1 \end{pmatrix} + \lambda \begin{pmatrix} 4\\-1\\3 \end{pmatrix}$$ and the line l_2 has vector equation $$\mathbf{r} = \begin{pmatrix} -6\\4\\-1 \end{pmatrix} + \mu \begin{pmatrix} 3\\-4\\1 \end{pmatrix}$$ where λ and μ are parameters. The lines l_1 and l_2 intersect at the point A and the acute angle between l_1 and l_2 is θ . (a) Write down the coordinates of A. (1) (b) Find the value of $\cos \theta$. (3) The point *X* lies on l_1 where $\lambda = 4$. (c) Find the coordinates of X. (1) (d) Find the vector \overrightarrow{AX} . (2) (e) Hence, or otherwise, show that $\left| \overrightarrow{AX} \right| = 4\sqrt{26}$. (2) The point Y lies on l_2 . Given that the vector \overrightarrow{YX} is perpendicular to l_1 , (f) find the length of AY, giving your answer to 3 significant figures. (3) (2) 4. Relative to a fixed origin O, the point A has position vector i - 3j + 2k and the point B has position vector -2i + 2j - k. The points A and B lie on a straight line l. (a) Find AB. (b) Find a vector equation of l. (c) The point C has position vector 2i + pj - 4k with respect to O, where p is a constant. (d) Given that AC is perpendicular to l, find (e) the value of p, (f) (d) the distance AC. | 7. | Relative to a fixed origin O, the point A has position vector $(2i - j + 5k)$, | |----|--| | | the point B has position vector $(5\mathbf{i} + 2\mathbf{j} + 10\mathbf{k})$, | | | and the point D has position vector $(-\mathbf{i} + \mathbf{j} + 4\mathbf{k})$. | The line l passes through the points A and B. (a) Find the vector \overrightarrow{AB} . (2) (b) Find a vector equation for the line l. (2) (c) Show that the size of the angle BAD is 109° , to the nearest degree. (4) The points A, B and D, together with a point C, are the vertices of the parallelogram ABCD, where $\overrightarrow{AB} = \overrightarrow{DC}$. (d) Find the position vector of C. (2) (e) Find the area of the parallelogram ABCD, giving your answer to 3 significant figures. (3) (f) Find the shortest distance from the point D to the line l, giving your answer to 3 significant figures. (2) 6. With respect to a fixed origin O, the lines l_1 and l_2 are given by the equations $$l_1 : \mathbf{r} = (-9\mathbf{i} + 10\mathbf{k}) + \lambda(2\mathbf{i} + \mathbf{j} - \mathbf{k})$$ $$l_2: \mathbf{r} = (3\mathbf{i} + \mathbf{j} + 17\mathbf{k}) + \mu(3\mathbf{i} - \mathbf{j} + 5\mathbf{k})$$ where λ and μ are scalar parameters. (a) Show that l_1 and l_2 meet and find the position vector of their point of intersection. (6) (b) Show that l_1 and l_2 are perpendicular to each other. (2) The point A has position vector $5\mathbf{i} + 7\mathbf{j} + 3\mathbf{k}$. (c) Show that A lies on l_1 . (1) The point B is the image of A after reflection in the line l_2 . (d) Find the position vector of B. (3) 7. The line l_1 has equation $\mathbf{r} = \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, where λ is a scalar parameter. June 2010 The line l_2 has equation $\mathbf{r} = \begin{pmatrix} 0 \\ 9 \\ -3 \end{pmatrix} + \mu \begin{pmatrix} 5 \\ 0 \\ 2 \end{pmatrix}$, where μ is a scalar parameter. Given that l_1 and l_2 meet at the point C, find (a) the coordinates of C. (3) The point A is the point on l_1 where $\lambda = 0$ and the point B is the point on l_2 where $\mu = -1$. (b) Find the size of the angle ACB. Give your answer in degrees to 2 decimal places. (4) (c) Hence, or otherwise, find the area of the triangle ABC. (5) (4) 6. With respect to a fixed origin O, the lines l_1 and l_2 are given by the equations $$l_1: \quad \mathbf{r} = \begin{pmatrix} 6 \\ -3 \\ -2 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix}, \qquad l_2: \quad \mathbf{r} = \begin{pmatrix} -5 \\ 15 \\ 3 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix},$$ where λ and μ are scalar parameters. - (a) Show that l_1 and l_2 meet and find the position vector of their point of intersection A. - (b) Find, to the nearest 0.1° , the acute angle between l_1 and l_2 . The point *B* has position vector $\begin{pmatrix} 5 \\ -1 \\ 1 \end{pmatrix}$. (c) Show that B lies on l_1 . (1) (d) Find the shortest distance from B to the line l_2 , giving your answer to 3 significant figures. 8. Relative to a fixed origin O, the point A has position vector $(10\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$, and the point B has position vector $(8\mathbf{i} + 3\mathbf{j} + 4\mathbf{k})$. The line l passes through the points A and B. (a) Find the vector \overrightarrow{AB} . (2) (b) Find a vector equation for the line 1. (2) The point C has position vector (3i + 12j + 3k). The point P lies on l. Given that the vector \overrightarrow{CP} is perpendicular to l, (c) find the position vector of the point P. (6) 7. With respect to a fixed origin O, the lines l_1 and l_2 are given by the equations $$l_1 : \mathbf{r} = (9\mathbf{i} + 13\mathbf{j} - 3\mathbf{k}) + \lambda(\mathbf{i} + 4\mathbf{j} - 2\mathbf{k})$$ $$l_2$$: $\mathbf{r} = (2\mathbf{i} - \mathbf{j} + \mathbf{k}) + \mu(2\mathbf{i} + \mathbf{j} + \mathbf{k})$ where λ and μ are scalar parameters. (a) Given that l_1 and l_2 meet, find the position vector of their point of intersection. (5) (b) Find the acute angle between l_1 and l_2 , giving your answer in degrees to 1 decimal place. (3) Given that the point A has position vector $4\mathbf{i} + 16\mathbf{j} - 3\mathbf{k}$ and that the point P lies on l_1 such that AP is perpendicular to l_1 , (c) find the exact coordinates of P. (6) 8. With respect to a fixed origin O, the line l has equation $$\mathbf{r} = \begin{pmatrix} 13 \\ 8 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}, \text{ where } \lambda \text{ is a scalar parameter.}$$ The point A lies on l and has coordinates (3, -2, 6). The point P has position vector $(-p \mathbf{i} + 2p \mathbf{k})$ relative to O, where p is a constant. Given that vector \overrightarrow{PA} is perpendicular to l, (a) find the value of p. (4) Given also that B is a point on l such that $\angle BPA = 45^{\circ}$, (b) find the coordinates of the two possible positions of B. (5) | | | | | |
 | |--|----------|---|---|--|------| | * | | *- | | | | | The state of s | 212-0-20 | | | | 1 | | | | 114 | | 17 | | | | | 200000000000000000000000000000000000000 | - | | | | | | | | 16 | | | | | | | 1 35 | | | | | | | and the second s | | | | | | | .77 |