

3. $y = \sqrt{(10x - x^2)}$.

(a) Complete the table below, giving the values of y to 2 decimal places.

x	1	1.4	1.8	2.2	2.6	3
у	3	3.47	3.84	4-14	4.39	4-58

(2)

(b) Use the trapezium rule, with all the values of y from your table, to find an approximation

for the value of $\int_{1}^{3} \sqrt{(10x-x^2)} dx$.

Trapezium rule $\int_{a}^{b} f(x) dx \approx \frac{1}{2} \text{ width } \left[1 \text{ stheight} \right] + 2 \left(\text{ sum middle} \right) + 2 \left(\text{ sum middle} \right)$ heights

 $\int \int (10x-x^2) dx = \frac{1}{2} \times 0.4 \left[3+2 \left(3 \cdot 4 + \frac{1}{2} \right) \right] + 3 \cdot 84 + 4 \cdot 14$

2 0.2 [3+4.58+2(15.84)] 2 7.852

$$y = \frac{5}{3x^2 - 2}$$

(a) Complete the table below, giving the values of y to 2 decimal places.

x	2	2.25	2.5	2.75	3
y	0.5	0.38	0.30	0.24	0.2

(2)

(b) Use the trapezium rule, with all the values of y from your table, to find an approximate value for $\int_{3}^{3} \frac{5}{3x^{2}-2} dx$.

(4)

Figure 2

Figure 2 shows a sketch of part of the curve with equation $y = \frac{5}{3x^2 - 2}$, x > 1.

At the points A and B on the curve, x = 2 and x = 3 respectively.

The region S is bounded by the curve, the straight line through B and (2, 0), and the line through A parallel to the y-axis. The region S is shown shaded in Figure 2.

(c) Use your answer to part (b) to find an approximate value for the area of S.

c) Area of Triansk T to find first

Area = = = 2x1x0.2 = 0.1

Area
$$S=0.3175-0.1$$

= 0.2175
= 0.22 (2dp)

Leave blank

6.

Figure 1

Figure 1 shows the graph of the curve with equation

$$y = \frac{16}{x^2} - \frac{x}{2} + 1, \qquad x > 0$$

The finite region R, bounded by the lines x = 1, the x-axis and the curve, is shown shaded in Figure 1. The curve crosses the x-axis at the point (4, 0).

(a) Complete the table with the values of y corresponding to x = 2 and 2.5

x	1	1.5	2	2.5	3	3.5	4
у	16.5	7.361	4	2.31	1.278	0.556	0

(2)

(b) Use the trapezium rule with all the values in the completed table to find an approximate value for the area of R, giving your answer to 2 decimal places.

(4)

(c) Use integration to find the exact value for the area of R.

$$=11.8775$$
 $=11.88 (2dp)$

(60)

$$y = 16x^{-2} - \frac{3c}{2} + 1$$

$$\int (16x^{-2} - \frac{3c}{2} + 1) dx$$

$$= \left[-16x^{-1} - \frac{3c}{4} + 3c \right]_{1}^{4}$$

$$= \left(-\frac{16}{4} - \frac{4}{4} + 4 \right) - \left(-\frac{16}{4} - \frac{1}{4} + 1 \right)$$

$$= \left(-4 - 4 + 4 \right) - \left(-16 - \frac{1}{4} + 1 \right)$$

$$= -4 - \left(-15 - 25 \right)$$

$$= 11.25$$

5. (a) In the space provided, sketch the graph of $y = 3^x$, $x \in \mathbb{R}$, showing the coordinates of the point at which the graph meets the y-axis.

(2)

(b) Complete the table, giving the values of 3^x to 3 decimal places.

x	0	0.2	0.4	0.6	0.8	1
3 ^x	i	1.246	1.552	1-933	2.408	3

(2)

(c) Use the trapezium rule, with all the values from your table, to find an approximation for the value of $\int_0^1 3^x dx$.

(4)

a)

trice the middle height

c) $\int 3x \, dx \approx \frac{1}{2} \times 0.2 \left[1+3+2 \left(1-246+1-55 \right) \right]$

= 1.8278

= 1.83 (2dp)

5. The curve C has equation

$$y = x\sqrt{(x^3 + 1)}, \qquad 0 \leqslant x \leqslant 2.$$

(a) Complete the table below, giving the values of y to 3 decimal places at x = 1 and x = 1.5.

x	0	0.5	1	1.5	2
y	0	0.530	1.44	3.137	6

(2)

(b) Use the trapezium rule, with all the y values from your table, to find an approximation for the value of $\int_0^2 x \sqrt{(x^3+1)} dx$, giving your answer to 3 significant figures.

Figure 2

Figure 2 shows the curve C with equation $y = x\sqrt{(x^3 + 1)}$, $0 \le x \le 2$, and the straight line segment l, which joins the origin and the point (2, 6). The finite region R is bounded by C and l.

(c) Use your answer to part (b) to find an approximation for the area of R, giving your answer to 3 significant figures.

(3)

Sb) Trapezium Rule

$$\int_{0}^{5} f(s) ds = \frac{1}{2} \text{ midth } \left[1^{5+} \text{ height } + \text{ last height} \right]$$

$$+2 \left(\text{ sum middle heightv} \right)$$

$$= \frac{1}{2} \cdot (0.5) \left[0 + 6 + 2 \left(0.530 + 1.414 + 3.137 \right) \right]$$

$$= 4.0405$$

$$= 4.04 \left(3.5f \right)$$
c) Area of triangle OBA

Area Shaded = Area triangle - Area under OBA curre

$$= 6 - 4.0405$$

$$= 1.9595$$

$$= 1.96 \text{ wit}^{2} (3sf)$$

Leave blank

2.

$$y = \sqrt{(5^x + 2)}$$

(a) Complete the table below, giving the values of y to 3 decimal places.

x	0	0.5	1	1.5	2
у	1-732	2-058	2.646	3.630	5-196

(2)

(b) Use the trapezium rule, with all the values of y from your table, to find an approximation for the value of $\int_0^2 \sqrt{(5^x+2)} dx$.

4. (a) Complete the table below, giving values of $\sqrt{(2^x + 1)}$ to 3 decimal places.

x	0	0.5	1	1.5	2	2.5	3
$\sqrt{(2^x+1)}$	1.414	1.554	1.732	1.957	2-236	2-580	3

(2)

Figure 1

Figure 1 shows the region R which is bounded by the curve with equation $y = \sqrt{(2^x + 1)}$, the x-axis and the lines x = 0 and x = 3

(b) Use the trapezium rule, with all the values from your table, to find an approximation for the area of R.

(4)

(c) By reference to the curve in Figure 1 state, giving a reason, whether your approximation in part (b) is an overestimate or an underestimate for the area of R.

(2)

b) Trapezium rule $\int_{-\infty}^{3} \sqrt{(2^{x}+1)} dx = \frac{1}{2} \times \text{class width } \times$ [first + last + 2 (middle terms)] $= \frac{1}{2} \times 0.5 \left[1.414+3+2(1.554+1.732+1.957+2.236+2.560)\right]$ = 6.133c) Overestimate since the trapezia lie abo

$$y = 3^x + 2x$$

(a) Complete the table below, giving the values of y to 2 decimal places.

x	0	0.2	0.4	0.6	0.8	1
у	1	1.65	2.35	3-13	4.01	5

(2)

(b) Use the trapezium rule, with all the values of y from your table, to find an approximate value for $\int_{0}^{1} (3^{x} + 2x) dx$.

(4)

5)	Trapezium
	•

1 x 0.2 [1+5+2(1-65+2.35+3.13+4-0)

2-	8	3	(2dp
	4			

$$y = \sqrt{3^x + x}$$

(a) Complete the table below, giving the values of y to 3 decimal places.

x	0	0.25	0.5	. 0.75	1
у	1	1.251	1-494	1.741	2

(2)

(b) Use the trapezium rule with all the values of y from your table to find an approximation for the value of $\int_{0}^{1} \sqrt{3^{x} + x} dx$

You must show clearly how you obtained your answer.

(4)

= 1-4965

Leave blank

Figure 2

The finite region R, as shown in Figure 2, is bounded by the x-axis and the curve with equation

$$y = 27 - 2x - 9\sqrt{x} - \frac{16}{x^2}, \qquad x > 0$$

The curve crosses the x-axis at the points (1, 0) and (4, 0).

(a) Complete the table below, by giving your values of y to 3 decimal places.

x	1	1.5	2	2.5	3	3.5	4
12	0	5.866	6-272	5.210	3-634	1.856	0

(2)

- (b) Use the trapezium rule with all the values in the completed table to find an approximate value for the area of *R*, giving your answer to 2 decimal places.
 - (4)

(c) Use integration to find the exact value for the area of R.

(6)

-11.42 (2dp

CZ Jan 2013

9 c)
$$\int (27 - 20c - 9\sqrt{x} - \frac{16}{x^2}) dx$$

$$= \int (27 - 20c - 9x^{\frac{1}{2}} - 16x^{-2}) dx$$

$$= \left[270c - x^{\frac{1}{2}} - 9x^{\frac{3}{2}} - \frac{16}{x^{-1}} \right]^{\frac{1}{4}}$$

$$= \left[270c - x^{\frac{1}{2}} - 6x^{\frac{3}{2}} + 16x^{-1} \right]^{\frac{1}{4}}$$

$$= \left(27x^{\frac{1}{4}} - 4x^{\frac{3}{2}} + \frac{16}{4} \right) - \left(27x^{\frac{1}{4}} - 6 + 16 \right)$$

$$= \left(108 - 16 - 48 + 4 \right) - \left(27 - 1 - 6 + 16 \right)$$

$$= \left(48 \right) - \left(36 \right)$$

$$= 12 \quad \text{square units}$$

$$y = \frac{5}{(x^2 + 1)}$$

(a) Complete the table below, giving the missing value of y to 3 decimal places.

x	0	0.5	1	1.5	2	2.5	3
у	5	4	2.5	1.538	1	0.690	0.5

(1)

Figure 1

Figure 1 shows the region R which is bounded by the curve with equation $y = \frac{5}{(x^2 + 1)}$, the x-axis and the lines x = 0 and x = 3the x-axis and the lines x = 0 and x = 3

(b) Use the trapezium rule, with all the values of y from your table, to find an approximate value for the area of R. (4)

(c) Use your answer to part (b) to find an approximate value for

$$\int_0^3 \left(4 + \frac{5}{(x^2 + 1)}\right) \mathrm{d}x$$

giving your answer to 2 decimal places.

(c)
$$\int_{0}^{3} \left(4 + \frac{5}{x^{2}+1}\right) dx$$

$$= \int_{0}^{3} 4 dx + \int_{0}^{3} \frac{5}{x^{2}+1} dx$$

$$= \int_{0}^{3} 4 dx + \int_{0}^{3} \frac{5}{x^{2}+1} dx$$

$$= \int_{0}^{4} 4 dx + \int_{0}^{4} 4 dx + \int_{0}^{4} 4 dx$$

$$= \int_{0}^{4} 4 dx + \int_{0}^{4} 4 dx + \int_{0}^{4} 4 dx$$

$$=$$