

The curve shown in Figure 1 has equation $y = e^x \sqrt{(\sin x)}$, $0 \le x \le \pi$. The finite region R bounded by the curve and the x-axis is shown shaded in Figure 1.

(a) Complete the table below with the values of y corresponding to $x = \frac{\pi}{4}$ and $\frac{\pi}{2}$, giving your answers to 5 decimal places.

x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π
y	0	1-84432	4.81048	8.87207	0

(2)

(b) Use the trapezium rule, with all the values in the completed table, to obtain an estimate for the area of the region R. Give your answer to 4 decimal places.

(4)

Aleg = 12.1948

2.

Figure 1

Figure 1 shows a sketch of the curve with equation $y = x \ln x$, $x \ge 1$. The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis and the line x = 4.

The table shows corresponding values of x and y for $y = x \ln x$.

x	1	1.5	2	2.5	3	3.5	4
y	0	0.608	1-386	2.291	3.296	4.385	5.545

- (a) Copy and complete the table with the values of y corresponding to x = 2 and x = 2.5, giving your answers to 3 decimal places.(2)
- (b) Use the trapezium rule, with all the values of y in the completed table, to obtain an estimate for the area of R, giving your answer to 2 decimal places.(4)
- (c) (i) Use integration by parts to find $\int x \ln x \, dx$.
 - (ii) Hence find the exact area of R, giving your answer in the form $\frac{1}{4}(a \ln 2 + b)$, where a and b are integers.

(7)

(b)
$$A = \frac{1}{2} \times 0.5 \left(0 + 5.545 + 2 \left(0.608 + 1.786 + 2.791 + 3.296 + 4.7851\right)\right)$$

$$A = 7.37$$

(i)
$$\int x \ln x \, dx$$

$$V = \frac{1}{2} x \int x \, dx$$

$$V = \frac{1}{2} x \int x \, dx$$

$$I = \frac{x^2 \ln x}{2} - \int \frac{x^2}{2} \cdot \int dx$$

$$= \frac{x^2 \ln x}{2} - \int \frac{x}{2} dx$$

$$= \frac{x^2 \ln x}{2} - \frac{x^2}{4} + C$$

(ii)
$$\left[\frac{x^{2}\ln x}{2} - \frac{x^{2}}{4}\right]_{1}^{4} = \left(8\ln 4 - 4\right) - \left(-\frac{1}{4}\right)$$

$$= 8\ln 4 - \frac{15}{4}$$

$$\left(\ln 4 \text{ need in terms et}\right)$$

$$= 3\left(2\ln 2\right) - \frac{15}{4}$$

$$\ln 2$$

$$= 1 \left(64\ln 2 - 15\right)$$

$$= 3\ln 4 = 2\ln 2$$

$$I = \int_{2}^{5} \frac{1}{4 + \sqrt{(x-1)}} dx.$$

(a) Given that $y = \frac{1}{4 + \sqrt{(x-1)}}$, copy and complete the table below with values of y corresponding to x = 3 and x = 5. Give your values to 4 decimal places.

r	2	3	4	5
V	0.2	0.1847	0.1745	0-1667

(b) Use the trapezium rule, with all of the values of y in the completed table, to obtain an estimate of I, giving your answer to 3 decimal places.

(c) Using the substitution $x = (u - 4)^2 + 1$, or otherwise, and integrating, find the exact value of I.

(8)

(4)

(2)

TOTAL FOR PAPER: 75 MARKS

END

(c)
$$x = (u-4)^2 + 1$$

$$\frac{dx}{du} = 2(u-4)$$

$$\frac{dx}{du} = 2(u-4) du$$

$$\frac{dx}{du} = 2(u-4) du$$

$$\frac{dx}{du} = 2(u-4) du$$

$$\frac{dx}{du} = 2(u-4) du$$

$$\int_{2}^{s} \frac{1}{4 + \sqrt{3c-1}} dx = \int_{5}^{6} \frac{1}{u} \times 2(u-4) du$$

$$5 = \int_{S}^{6} 2 - \frac{8}{u} du$$

$$= \left[2u - 8 \ln u \right]_{S}^{6} = 2 + 8 \ln \left(\frac{5}{6} \right)$$

$$= 2 + 8 \ln \left(\frac{5}{6} \right)$$

Leave blank

6.

Figure 3

Figure 3 shows a sketch of the curve with equation $y = \frac{2\sin 2x}{(1+\cos x)}$, $0 \le x \le \frac{\pi}{2}$.

The finite region R, shown shaded in Figure 3, is bounded by the curve and the x-axis.

The table below shows corresponding values of x and y for $y = \frac{2\sin 2x}{(1+\cos x)}$.

x	0	$\frac{\pi}{8}$	$\frac{\pi}{4}$	$\frac{3\pi}{8}$	$\frac{\pi}{2}$
у	0	0-73508	1.17157	1.02280	0

- (a) Complete the table above giving the missing value of y to 5 decimal places. (1)
- (b) Use the trapezium rule, with all the values of y in the completed table, to obtain an estimate for the area of R, giving your answer to 4 decimal places.
 (3)
- (c) Using the substitution $u = 1 + \cos x$, or otherwise, show that

$$\int \frac{2\sin 2x}{(1+\cos x)} \, dx = 4\ln(1+\cos x) - 4\cos x + k$$

where k is a constant.

(5)

(d) Hence calculate the error of the estimate in part (b), giving your answer to 2 significant figures.

(3)

Leave blank

Question 6 continued

$$\int \frac{2\sin 2x}{1+\cos x} dx = \int \frac{2(2\sin x\cos x)}{1+\cos x} dx$$

$$= 4 \int \frac{1}{u} - 1 \, du$$

Leave

Question 6 continued

Q6

(Total 12 marks)

Question Number	Scheme	Marks
5.	(a) $\int x e^{2x} dx = \frac{1}{2} x e^{2x} - \frac{1}{2} \int e^{2x} dx$ Attempting parts in the right direction	M1 A1
	$= \frac{1}{2}xe^{2x} - \frac{1}{4}e^{2x}$	A1
	$\left[\frac{1}{2}xe^{2x} - \frac{1}{4}e^{2x}\right]_0^1 = \frac{1}{4} + \frac{1}{4}e^2$	M1 A1
	(b) $x = 0.4 \implies y \approx 0.89022$	(5)
	$x = 0.4 \implies y \approx 0.89022$ $x = 0.8 \implies y \approx 3.96243 \text{Both are required to 5 d.p}$	B1 (1
	(c) $I \approx \frac{1}{2} \times 0.2 \times []$	B1
	$\approx \times [0+7.38906+2(0.29836+.89022+1.99207+3.96243)]$	M1 A1ft
	ft their answers to (b) $\approx 0.1 \times 21.67522$	
	≈ 2.168 cao	A1 (4) [10]
	Note $\frac{1}{4} + \frac{1}{4}e^2 \approx 2.097 \dots$	

Question Number			Scheme				Marks
6. (a)					1		
	X	1	1.5	2	2.5	3	
	у	0	0.5 ln 1.5	In 2	1.5 ln 2.5	2 ln 3	
	or y	0	0.2027325541	ln2	1.374436098	2 ln 3	
						her 0.5 ln 1.5 and 1.5 ln 2.9 or awrt 0.20 and 1.3 mixture of decimals and ln's	₇ B1
(b)(i)	$I_1 \approx \frac{1}{2} \times 1 \times$	(0 + 2 (In	$2)+2\ln 3$			For structure of trapezium rule {}	8.8.4
	$=\frac{1}{2}\times 3$.5835189	938 = 1.791759) = 1.79	92 (4sf)	1.792	A1 cao
(ii)	$I_2 \approx \frac{1}{2} \times 0.$	5 ;×{0 + 2	? (0.5 ln 1.5 + ln 2 + 1.	.5 ln 2.5) -	+ 2 ln 3}	Outside brackets $\frac{1}{2} \times 0.5$ For structure of trapezium	1
	$=\frac{1}{4}\times 6$	3.737856	242 = 1.68446	4		rule {} awrt 1.684	A1
(c)	With incre	easing ord trapezia	dinates, <u>the line sec</u> are closer to the cu	gments a irve.		on or an appropriate diagram aborating the correct reason	

Beware: In part (b) candidate can add up the individual trapezia:

(b)(i)
$$I_1 \approx \frac{1}{2} (0 + \ln 2) + \frac{1}{2} (\ln 2 + \ln 3)$$

$$\text{(ii)} \hspace{0.5cm} I_2 \approx \tfrac{1}{2} \cdot \tfrac{1}{2} \Big(\underline{0 + 0.5 \ln 1.5} \Big) + \tfrac{1}{2} \cdot \tfrac{1}{2} \Big(\underline{0.5 \ln 1.5 + \ln 2} \Big) + \tfrac{1}{2} \cdot \tfrac{1}{2} \Big(\underline{\ln 2 + 1.5 \ln 2.5} \Big) + \tfrac{1}{2} \cdot \tfrac{1}{2} \Big(\underline{1.5 \ln 2.5 + 2 \ln 3} \Big) \\$$

Question Number	Scheme		Marks
6. (d)	$\begin{cases} u = \ln x & \Rightarrow & \frac{du}{dx} = \frac{1}{x} \\ \frac{dv}{dx} = x - 1 & \Rightarrow & v = \frac{x^2}{2} - x \end{cases}$	Use of 'integration by parts' formula in the correct direction	M1
	$I = \left(\frac{x^2}{2} - x\right) \ln x - \int \frac{1}{x} \left(\frac{x^2}{2} - x\right) dx$	Correct expression	A1
	$= \left(\frac{x^2}{2} - x\right) \ln x - \underline{\int \left(\frac{x}{2} - 1\right) dx}$	An attempt to multiply at least one term through by $\frac{1}{x}$ and an attempt to	
	$=\left(\frac{x^2}{2} - x\right) \ln x - \left(\frac{x^2}{4} - x\right)$ (+c)	integrate;	M1;
2	(2 1) (4 1)	correct integration	A1
lki.	$\therefore I = \left[\left(\frac{x^2}{2} - x \right) \ln x - \frac{x^2}{4} + x \right]_1^3$		
	$= \left(\frac{3}{2}\ln 3 - \frac{9}{4} + 3\right) - \left(-\frac{1}{2}\ln 1 - \frac{1}{4} + 1\right)$	Substitutes limits of 3 and 1 and subtracts.	ddM1
	$= \frac{3}{2} \ln 3 + \frac{3}{4} + 0 - \frac{3}{4} = \frac{3}{2} \ln 3 AG$	3 ln 3	A1 cso
			[6
Aliter 6. (d)	$\int (x-1)\ln x dx = \int x \ln x dx - \int \ln x dx$		
Way 2	$\int x \ln x dx = \frac{x^2}{2} \ln x - \int \frac{x^2}{2} \cdot \left(\frac{1}{x}\right) dx$	Correct application of 'by parts'	M1
	$=\frac{x^2}{2}\ln x - \frac{x^2}{4}$ (+ c)	Correct integration	A1
	$\int \ln x dx = x \ln x - \int x \cdot \left(\frac{1}{x}\right) dx$	Correct application of 'by parts'	M1
	$= x \ln x - x + c$	Correct integration	A1
	$\int_{1}^{3} (x-1) \ln x dx = \left(\frac{9}{2} \ln 3 - 2\right) - \left(3 \ln 3 - 2\right) = \frac{3}{2} \ln 3 \text{ AG}$	Substitutes limits of 3 and 1 into both integrands and subtracts.	ddM1
		3 ₂ ln3	A1 cso

Question Number	Scheme		Marks
Aliter 6. (d)	$\begin{cases} u = \ln x & \Rightarrow \frac{du}{dx} = \frac{1}{x} \\ \frac{dv}{dx} = (x - 1) & \Rightarrow v = \frac{(x - 1)^2}{2} \end{cases}$	Use of 'integration by parts' formula in the correct direction	M1
Way 3	$I = \frac{(x-1)^2}{2} \ln x - \int \frac{(x-1)^2}{2x} dx$	Correct expression	A1
	$= \frac{(x-1)^2}{2} \ln x - \int \frac{x^2 - 2x + 1}{2x} dx$	Candidate multiplies out numerator to obtain three terms	
	$= \frac{(x-1)^2}{2} \ln x - \int \left(\frac{1}{2}x - 1 + \frac{1}{2x}\right) dx$	multiplies at least one term through by $\frac{1}{x}$ and then attempts to	
	$= \frac{(x-1)^2}{2} \ln x - \left[\frac{x^2}{4} - x + \frac{1}{2} \ln x \right] (+c)$	integrate the result; <u>correct integration</u>	M1;
	$\therefore I = \left[\frac{(x-1)^2}{2} \ln x - \frac{x^2}{4} + x - \frac{1}{2} \ln x \right]_1^3$		
	$= \left(2\ln 3 - \frac{9}{4} + 3 - \frac{1}{2}\ln 3\right) - \left(0 - \frac{1}{4} + 1 - 0\right)$	Substitutes limits of 3 and 1 and subtracts.	ddM1
	$= 2 \ln 3 - \frac{1}{2} \ln 3 + \frac{3}{4} + \frac{1}{4} - 1 = \frac{3}{2} \ln 3 AG$	$\frac{3}{2}$ ln 3	A1 cso
			I

Beware: $\int \frac{1}{2x} dx$ can also integrate to $\frac{1}{2} \ln 2x$

Beware: If you are marking using WAY 2 please make sure that you allocate the marks in the order they appear on the mark scheme. For example if a candidate only integrated lnx correctly then they would be awarded M0A0M1A1M0A0 on ePEN.

Question Number	Scheme		Marks
Aliter	By substitution		
6. (d) Way 4	$u = \ln x \implies \frac{du}{dx} = \frac{1}{x}$		
	$I = \int (e^u - 1).ue^u du$	Correct expression	
	$= \int \!\! u \! \left(e^{2u} - e^u \right) \! du$	Use of 'integration by parts' formula in the correct direction	M1
	$= u \left(\frac{1}{2} e^{2u} - e^{u} \right) - \int \underbrace{\left(\frac{1}{2} e^{2u} - e^{u} \right)} dx$	Correct expression	A1
	$= u \left(\frac{1}{2} e^{2u} - e^{u} \right) - \left(\frac{1}{4} e^{2u} - e^{u} \right) (+c)$	Attempt to integrate;	M1;
	(2) (4)	correct integration	A1
	$\therefore I = \left[\frac{1}{2} u e^{2u} - u e^{u} - \frac{1}{4} e^{2u} + e^{u} \right]_{ln1}^{ln3}$		
	$= \left(\frac{9}{2}\ln 3 - 3\ln 3 - \frac{9}{4} + 3\right) - \left(0 - 0 - \frac{1}{4} + 1\right)$	Substitutes limits of In3 and In1 and subtracts.	ddM1
	$= \frac{3}{2} \ln 3 + \frac{3}{4} + \frac{1}{4} - 1 = \frac{3}{2} \ln 3 AG$	$\frac{3}{2}$ ln 3	A1 cso
]
			13 mark

Figure 1

Figure 1 shows part of the curve with equation $y = \sqrt{\tan x}$. The finite region R, which is bounded by the curve, the x-axis and the line $x = \frac{\pi}{4}$, is shown shaded in Figure 1.

(a) Given that $y = \sqrt{(\tan x)}$, complete the table with the values of y corresponding to $x = \frac{\pi}{16}$, $\frac{\pi}{8}$ and $\frac{3\pi}{16}$, giving your answers to 5 decimal places.

x	0	$\frac{\pi}{16}$	$\frac{\pi}{8}$	$\frac{3\pi}{16}$	$\frac{\pi}{4}$
y	0	0-44600	0.64359	0.81742	1

(b) Use the trapezium rule with all the values of y in the completed table to obtain an estimate for the area of the shaded region R, giving your answer to 4 decimal places.

(4)

The region R is rotated through 2π radians around the x-axis to generate a solid of revolution.

(c) Use integration to find an exact value for the volume of the solid generated.

(4)

Question 7 continued

1.

Figure 1

Figure 1 shows part of the curve with equation $y = e^{0.5x^2}$. The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis, the y-axis and the line x = 2.

(a) Complete the table with the values of y corresponding to x = 0.8 and x = 1.6.

x	0	0.4	0.8	1.2	1.6	2
у	e ⁰	e ^{0.08}	60.35	e ^{0.72}	e+28	e ²

(1)

(b) Use the trapezium rule with all the values in the table to find an approximate value for the area of R, giving your answer to 4 significant figures.

(1)

(4)

Figure 1

Figure 1 shows the finite region R bounded by the x-axis, the y-axis and the curve with equation $y = 3\cos\left(\frac{x}{3}\right)$, $0 \le x \le \frac{3\pi}{2}$.

The table shows corresponding values of x and y for $y = 3\cos\left(\frac{x}{3}\right)$.

x	0	$\frac{3\pi}{8}$	$\frac{3\pi}{4}$	$\frac{9\pi}{8}$	$\frac{3\pi}{2}$
у	3	2.77164	2.12132	1-14805	0

(a) Complete the table above giving the missing value of y to 5 decimal places.

(b) Using the trapezium rule, with all the values of y from the completed table, find an approximation for the area of R, giving your answer to 3 decimal places.

(c) Use integration to find the exact area of R.

A = 8.884

c)
$$T = \int_{c}^{3\pi n} 3\pi (x) = \left[\frac{9 \sin(x)}{3} \right]_{c}^{3\pi/2}$$

1.

Figure 1

Figure 1 shows part of the curve with equation $y = \sqrt{(0.75 + \cos^2 x)}$. The finite region R, shown shaded in Figure 1, is bounded by the curve, the y-axis, the x-axis and the line with equation $x = \frac{\pi}{3}$.

(a) Copy and complete the table with values of y corresponding to $x = \frac{\pi}{6}$ and $x = \frac{\pi}{4}$.

x	0	$\frac{\pi}{12}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
у	1.3229	1.2973	1-2247	1-1180	1

(2)

(b) Use the trapezium rule

(i) with the values of y at x = 0, $x = \frac{\pi}{6}$ and $x = \frac{\pi}{3}$ to find an estimate of the area of R. Give your answer to 3 decimal places.

(ii) with the values of y at x = 0, $x = \frac{\pi}{12}$, $x = \frac{\pi}{6}$, $x = \frac{\pi}{4}$ and $x = \frac{\pi}{3}$ to find a further estimate of the area of R. Give your answer to 3 decimal places.

2

(6)

bi)
$$I = \frac{\pi}{12} \left(1.3219 + 1 + (2 \times 1.2147) \right)$$

= 1.249

(ii)
$$I = \frac{1}{2} \left(\frac{x}{12} \right) \left(1.3219 + 1 + 2 \left(1.2973 + 1.2147 + 1.1180 \right) \right)$$

= 1.257

blank Question 4 continued Area = 1 x \(\frac{1}{2}\)\(\frac{1}{4}\)\(0 + 3.9210 + 2\)\(0.0333 + 0.324 + 1.3596\) = 1.30 (c) $\int_{0}^{\sqrt{2}} \ln(x^2+2) dx$ Limits $u = x^2 + 2$ du = 2x dx 1 du = oc dx =) $I = \int_{-\infty}^{\infty} sc^2 \ln(sc^2+2)x ds$ (split sc^3 to sc^2 and sc) $I = \int_{-\infty}^{\infty} (u-2) \ln u \frac{1}{2} du$ = 1 ((u-2) lan du

Leave

		_			7		_		
Ę	1	1/8-8	11/4 -	(2-4)	1/2	-	(4-8)	- ((-4
	2	//(1	(-	- 1	(

$$=\frac{1}{2}\left\{2\ln 2-(-1)\right\}$$

(Total 15 marks) Q4

Question 4 continued

(d) by parts

 $I = \frac{1}{2} \int_{2}^{4} (u-2) \ln u \, du$

as by parts wer ward v charge I back to ke

 $I = \frac{1}{2} \int_{2}^{4} (x-2) \ln x \, dx$

 $u = lnx \rightarrow \frac{du}{dx} = \frac{1}{x}$

 $v = x^2 - 2x < dx - x - 2$ $\frac{1}{2} dx$

I = uv - Svolu de

 $I = \frac{1}{2} \left[\left(\frac{3c^2 - 2x}{2} \right) \left(\frac{\ln x}{2} \right) \right] - \int_{2}^{4} \left(\frac{x^2 - 2x}{2} \right) \cdot \frac{1}{x} dx$

 $=\frac{1}{2}\left\{\left[\left(\frac{2}{2}-2\pi\right)\left(\frac{1}{2}\pi\right)\right]^{4}-\left(\frac{4}{2}\pi-2\pi\right)^{2}dx\right\}$

 $=\frac{1}{2}\left\{\left[\frac{x^{2}-2x}{2}-2x\right]^{4}-\left[\frac{x^{2}}{4}-2x\right]^{4}\right\}$

7.

Figure 3

Figure 3 shows a sketch of part of the curve with equation $y = x^{\frac{1}{2}} \ln 2x$.

The finite region R, shown shaded in Figure 3, is bounded by the curve, the x-axis and the lines x = 1 and x = 4

(a) Use the trapezium rule, with 3 strips of equal width, to find an estimate for the area of R, giving your answer to 2 decimal places.

(b) Find $\int x^{\frac{1}{2}} \ln 2x \, dx$.

(4)

(4)

(c) Hence find the exact area of R, giving your answer in the form $a \ln 2 + b$, where a and b are exact constants.

(3)

a)
$$x = 1 + 2 + 3 + 4$$
 $y = 1n2 \sqrt{2} \ln 4 \sqrt{3} \ln 6 + 2 \ln 8$

Aros 2 7.49

Leave blank

Leave blank

Question 7 continued

(b)
$$\int x^{1/2} \ln 2\pi x \, d\pi x$$
 $v = \frac{1}{2} x^{3/2} = \frac{1}{2} x^{$

$$= \frac{2}{3} x^{3/2} (\ln 2x) - \int \frac{2}{3} x^{1/2} dx$$

$$= \frac{2}{3} x^{3/2} \left(\ln 2 \kappa \right) - \frac{4}{9} x^{3/2} + C$$

(c)
$$H = \int_{1}^{4} x^{1/2} \ln 2\pi \, d\pi = \left[\frac{2}{3} x^{3/2} \ln 2x - \frac{4}{9} x^{3/2} \right]_{1}^{4}$$

$$= \left(\frac{16 \ln 8}{3} - \frac{32}{9} \right) - \left(\frac{2 \ln 2}{3} - \frac{4}{9} \right)$$

$$= \frac{16 \ln 8}{3} - \frac{32}{9} - \frac{2}{3} \ln 2 + \frac{4}{9}$$

$$= \frac{16 \ln 2}{3} - \frac{2}{3} \ln 2 - \frac{28}{9}$$

$$= \frac{46 \ln 2}{3} - \frac{28}{3}$$

. 4.

Figure 1

Figure 1 shows a sketch of part of the curve with equation $y = \frac{x}{1 + \sqrt{x}}$. The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis, the line with equation x = 1 and the line with equation x = 4.

(a) Complete the table with the value of y corresponding to x = 3, giving your answer to 4 decimal places.

(1)

х	1	2	3	4
у	0.5	0.8284	1.0981	1.3333

(b) Use the trapezium rule, with all the values of y in the completed table, to obtain an estimate of the area of the region R, giving your answer to 3 decimal places.

(3)

(c) Use the substitution $u = 1 + \sqrt{x}$, to find, by integrating, the exact area of R.

= 2-84315

4c)
$$y = \frac{x}{1+\sqrt{x}}$$
 $\int \frac{1}{1+\sqrt{x}} dx$ using substitution

$$\int \frac{(u-1)^2 \times 2 \times (u-1)}{u} du$$

$$= \int \frac{(2u-2)(u^2-2u+1)}{u} du$$

$$= \int \frac{3}{2u^3-4u^2+2u-2u^2+4u-2} du$$

$$= \int \frac{3}{2u^3-6u^2+6u-2} du$$

$$= \int \frac{3}{2u^3-6u+6-2} du$$

= 2 Ju2-3u+3-tu du

$$U = 1 + \sqrt{x}$$

$$U = 1 + \sqrt{x}$$

$$\frac{du}{dx} = \frac{1}{2}xx$$

$$\frac{u = 1 + \sqrt{x}}{(u - 1)^2 = xx}$$

$$\frac{(u - 1)^2 = xx}{(u - 1)^2 = xx}$$

$$\frac{du}{dx} = \frac{1 + \sqrt{x}}{2}$$

$$\frac{(u - 1)^2 = xx}{(u - 1)^2 = xx}$$

$$\frac{du}{dx} = \frac{1 + \sqrt{x}}{2}$$

$$\frac{(u - 1)^2 = xx}{(u - 1)^2 = xx}$$

$$\frac{du}{dx} = \frac{1 + \sqrt{x}}{2}$$

$$\frac{(u - 1)^2 = xx}{(u - 1)^2 = xx}$$

$$\frac{du}{dx} = \frac{1 + \sqrt{x}}{2}$$

$$\frac{(u - 1)^2 = xx}{(u - 1)^2 = xx}$$

$$\frac{du}{dx} = \frac{1 + \sqrt{x}}{2}$$

$$\frac{(u - 1)^2 = xx}{(u - 1)^2 = xx}$$

$$\frac{du}{dx} = \frac{1 + \sqrt{x}}{2}$$

$$\frac{(u - 1)^2 = xx}{(u - 1)^2 = xx}$$

$$\frac{du}{dx} = \frac{1 + \sqrt{x}}{2}$$

$$= 2 \left[\frac{1}{3}u^{3} - \frac{3}{2}u^{2} + 3u - \ln u \right]_{2}$$

$$= 2 \left[(9 - 27 + 9 - \ln 3) - (8 - 6 + 6 - \ln 2) \right]$$

$$= 2 \left[(9 - \ln 3) - (8 - \ln 2) \right]$$

$$= 2 \left[(1 - \ln 3 + \ln 2) \right]$$

$$= 2 \left(\frac{11}{6} + \ln \frac{2}{3} \right)$$

$$= \frac{11}{3} + 2 \ln \frac{2}{3}$$

Leave blank

3.

Figure 1

Figure 1 shows the finite region R bounded by the x-axis, the y-axis, the line $x = \frac{\pi}{2}$ and the curve with equation

$$y = \sec\left(\frac{1}{2}x\right), \quad 0 \leqslant x \leqslant \frac{\pi}{2}$$

The table shows corresponding values of x and y for $y = \sec\left(\frac{1}{2}x\right)$.

x	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	
у	1	1.035276	1.154701	1.414214	

(a) Complete the table above giving the missing value of y to 6 decimal places.

(1)

(b) Using the trapezium rule, with all of the values of y from the completed table, find an approximation for the area of R, giving your answer to 4 decimal places.

(3)

Region *R* is rotated through 2π radians about the *x*-axis.

(c) Use calculus to find the exact volume of the solid formed.

(4)

Area =
$$\frac{1}{2} \times \frac{\pi}{6} \left[1 + 1.414214 \right]$$

+ $2 \left(1.035276 + 1.154701 \right) \right]$
 ≈ 1.778709
 $\approx 1.7787 (4-dp)$

c)
$$Volume = T \int_{-\infty}^{\infty} sec(\frac{1}{2}sc) dsc$$

$$= T \left[2 tan(\frac{1}{4}x) \right]_{-\infty}^{\infty}$$

$$= T \left(2 tan(\frac{\pi}{4}) - 0 \right)$$

$$= 2T$$