

4. The point A(-6, 4) and the point B(8, -3) lie on the line L.

(a) Find an equation for L in the form ax + by + c = 0, where a, b and c are integers.

(4)

(b) Find the distance AB, giving your answer in the form $k\sqrt{5}$, where k is an integer.

(3)

Q4

(Total 7 marks)

Leave blank

10. The curve C has equation

$$y = (x+3)(x-1)^2$$
.

(a) Sketch C showing clearly the coordinates of the points where the curve meets the coordinate axes.

(4)

(b) Show that the equation of C can be written in the form

$$y = x^3 + x^2 - 5x + k,$$

where k is a positive integer, and state the value of k.

(2)

There are two points on C where the gradient of the tangent to C is equal to 3.

(c) Find the x-coordinates of these two points.

(6)

DAN 2009

Leave blank

- 10. The line l_1 passes through the point A (2, 5) and has gradient $-\frac{1}{2}$.
 - (a) Find an equation of l_1 , giving your answer in the form y = mx + c.

(3)

The point B has coordinates (-2, 7).

(b) Show that B lies on l_1 .

(1)

(c) Find the length of AB, giving your answer in the form $k\sqrt{5}$, where k is an integer.

(3)

The point C lies on I_1 and has x-coordinate equal to p.

The length of AC is 5 units.

(d) Show that p satisfies

 $p^2 - 4p - 16 = 0$.

9. The line L_1 has equation 2y-3x-k=0, where k is a constant.

Given that the point A (1,4) lies on L_1 , find

(a) the value of k,

(1)

(b) the gradient of L_1 .

(2)

The line L_2 passes through A and is perpendicular to L_1 .

(c) Find an equation of L_2 giving your answer in the form ax + by + c = 0, where a, b and c are integers.

(4)

The line L_2 crosses the x-axis at the point B.

(d) Find the coordinates of B.

(2)

(e) Find the exact length of AB.

(2)

6.

Leave blank

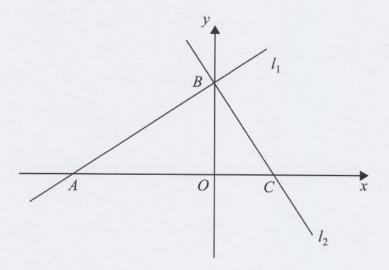


Figure 1

The line l_1 has equation 2x-3y+12=0

(a) Find the gradient of l_1 .

(1)

The line l_1 crosses the x-axis at the point A and the y-axis at the point B, as shown in Figure 1.

The line l_2 is perpendicular to l_1 and passes through B.

(b) Find an equation of l_2 .

(3)

The line l_2 crosses the x-axis at the point C.

(c) Find the area of triangle ABC.

10.

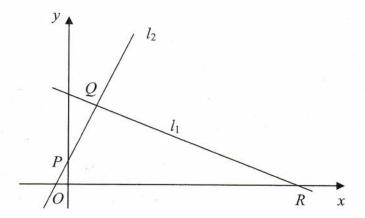


Figure 2

The points Q(1, 3) and R(7, 0) lie on the line l_1 , as shown in Figure 2.

The length of QR is $a\sqrt{5}$.

(a) Find the value of a.

(3)

The line l_2 is perpendicular to l_1 , passes through Q and crosses the y-axis at the point P, as shown in Figure 2.

Find

(b) an equation for l_2 ,

(5)

(c) the coordinates of P,

(1)

(d) the area of ΔPQR .

8.

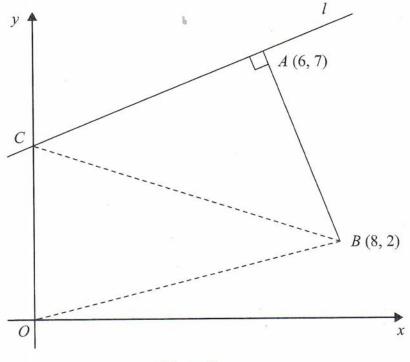


Figure 1

The points A and B have coordinates (6, 7) and (8, 2) respectively.

The line l passes through the point A and is perpendicular to the line AB, as shown in Figure 1.

(a) Find an equation for l in the form ax + by + c = 0, where a, b and c are integers. (4)

Given that l intersects the y-axis at the point C, find

(b) the coordinates of C,

(2)

(c) the area of $\triangle OCB$, where O is the origin.

(2)

11. The curve C has equation

$$y = x^3 - 2x^2 - x + 9$$
, $x > 0$

The point P has coordinates (2, 7).

(a) Show that P lies on C.

(1)

(b) Find the equation of the tangent to C at P, giving your answer in the form y = mx + c, where m and c are constants.

(5)

The point Q also lies on C.

Given that the tangent to C at Q is perpendicular to the tangent to C at P,

(c) show that the x-coordinate of Q is $\frac{1}{3}(2+\sqrt{6})$.

- 4	-
- 1	J
- 83	. /

	-
	•

. The line l_1 passes through the points $P(-1, 2)$ and $Q(11, 8)$.	
(a) Find an equation for l_1 in the form $y = mx + c$, where m and c are	constants
, more manage are	(4)
The line l_2 passes through the point $R(10, 0)$ and is perpendicular to l_1 . intersect at the point S .	
(b) Calculate the coordinates of S.	
	(5)
(c) Show that the length of RS is $3\sqrt{5}$.	. ,
(7)	(2)
(d) Hence, or otherwise, find the exact area of triangle PQR.	(-)
(a)	(4)
	(-)

11. The line l_1 has equation y = 3x + 2 and the line l_2 has equation 3x + 2y - 8 = 0.

(a) Find the gradient of the line l_2 .

(2)

The point of intersection of l_1 and l_2 is P.

(b) Find the coordinates of P.

(3)

The lines l_1 and l_2 cross the line y = 1 at the points A and B respectively.

(c) Find the area of triangle ABP.

8.	(a) Find an equation of the line joining $A(7, 4)$ and $B(2, 0)$, giving your answer form $ax+by+c=0$, where a , b and c are integers.	swer in the (3)
		(3)
	(b) Find the length of AB , leaving your answer in surd form.	(2)
	The point C has coordinates $(2, t)$, where $t > 0$, and $AC = AB$.	
	(c) Find the value of t.	(1)
	(d) Find the area of triangle ABC.	(2)

~~~~		
***************************************		
-		
**************************************		
***************************************		400
	•	
		<i>y</i>

Leave blank

10. The curve C has equation

$$y = (x+1)(x+3)^2$$

(a) Sketch C, showing the coordinates of the points at which C meets the axes.

(4)

(b) Show that  $\frac{dy}{dx} = 3x^2 + 14x + 15$ .

(3)

The point A, with x-coordinate -5, lies on C.

(c) Find the equation of the tangent to C at A, giving your answer in the form y = mx + c, where m and c are constants.

(4)

Another point B also lies on C. The tangents to C at A and B are parallel.

(d) Find the x-coordinate of B.

blank

9. The line  $L_1$  has equation 4y + 3 = 2x

The point A(p, 4) lies on  $L_1$ 

(a) Find the value of the constant p.

(1)

The line  $L_2$  passes through the point  $C\left(2,4\right)$  and is perpendicular to  $L_1$ 

(b) Find an equation for  $L_2$  giving your answer in the form ax + by + c = 0, where a, b and c are integers.

(5)

The line  $L_1$  and the line  $L_2$  intersect at the point D.

(c) Find the coordinates of the point D.

(3)

(d) Show that the length of *CD* is  $\frac{3}{2}\sqrt{5}$ 

(3)

A point B lies on  $L_1$  and the length of  $AB = \sqrt{(80)}$ 

The point E lies on  $L_2$  such that the length of the line CDE = 3 times the length of CD.

(e) Find the area of the quadrilateral ACBE.

5.	The	line	1.	has	equation	$\nu =$	-2x +	3
	1110	TITLE	61	1145	equation	V -	- 4A T	

The line  $l_2$  is perpendicular to  $l_1$  and passes through the point (5, 6).

(a) Find an equation for  $l_2$  in the form ax + by + c = 0, where a, b and c are integers.

(3)

The line  $l_2$  crosses the x-axis at the point A and the y-axis at the point B.

(b) Find the x-coordinate of A and the y-coordinate of B.

(2)

Given that O is the origin,

(c) find the area of the triangle *OAB*.

(2)



- 6. The straight line  $L_1$  passes through the points (-1,3) and (11,12).
  - (a) Find an equation for  $L_1$  in the form ax + by + c = 0, where a, b and c are integers.

(4)

The line  $L_2$  has equation 3y + 4x - 30 = 0.

(b) Find the coordinates of the point of intersection of  ${\cal L}_1$  and  ${\cal L}_2$  .

Leave blank

11.

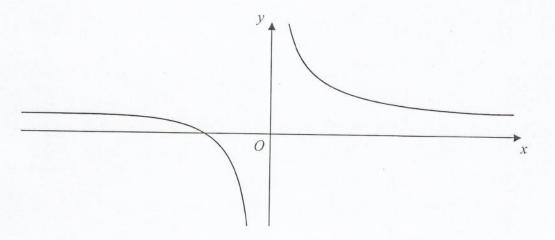



Figure 2

Figure 2 shows a sketch of the curve H with equation  $y = \frac{3}{x} + 4$ ,  $x \neq 0$ .

(a) Give the coordinates of the point where H crosses the x-axis.

(1)

(b) Give the equations of the asymptotes to H.

(2)

(c) Find an equation for the normal to H at the point P(-3, 3).

(5)

This normal crosses the x-axis at A and the y-axis at B.

(d) Find the length of the line segment AB. Give your answer as a surd.

4	
_	