

Question Number	Scheme		Marks
5. (a)	$\sin x + \cos y = 0.5 \qquad (eqn *)$		
	$\left\{\frac{\partial X}{\partial x} \times\right\} \cos x - \sin y \frac{dy}{dx} = 0 \qquad (eqn \#)$	Differentiates implicitly to include $\pm \sin y \frac{dy}{dx}$. (Ignore $\left(\frac{dy}{dx} = \right)$.)	M1
	$\frac{dy}{dx} = \frac{\cos x}{\sin y}$	cos x sin y	Al cso
(b)	$\frac{dy}{dx} = 0 \implies \frac{\cos x}{\sin y} = 0 \implies \cos x = 0$	Candidate realises that they need to solve 'their numerator' = 0or candidate sets $\frac{dy}{dx} = 0$ in their (eqn #) and attempts to solve the resulting equation.	M1√
	giving $x = -\frac{\pi}{2}$ or $x = \frac{\pi}{2}$	both $\underline{x = -\frac{\pi}{2}}$, $\frac{\pi}{2}$ or $\underline{x = \pm 90^{\circ}}$ or awrt $\underline{x = \pm 1.57}$ required here	A1
	When $x = -\frac{\pi}{2}$, $\sin(-\frac{\pi}{2}) + \cos y = 0.5$ When $x = \frac{\pi}{2}$, $\sin(\frac{\pi}{2}) + \cos y = 0.5$	Substitutes either their $x = \frac{\pi}{2}$ or $x = -\frac{\pi}{2}$ into eqn *	M1
	⇒ $\cos y = 1.5$ ⇒ y has no solutions ⇒ $\cos y = -0.5$ ⇒ $y = \frac{2\pi}{3}$ or $-\frac{2\pi}{3}$	Only one of $y = \frac{2\pi}{3}$ or $\frac{-2\pi}{3}$ or $\frac{120^{\circ}}{3}$ or $\frac{-120^{\circ}}{3}$ or awrt $\frac{-2.09}{3}$ or awrt $\frac{2.09}{3}$	A1
	In specified range $(x, y) = (\frac{\pi}{2}, \frac{2\pi}{3})$ and $(\frac{\pi}{2}, -\frac{2\pi}{3})$	Only exact coordinates of $\frac{\left(\frac{\pi}{2}, \frac{2\pi}{3}\right)}{2}$ and $\frac{\left(\frac{\pi}{2}, -\frac{2\pi}{3}\right)}{2}$ Do not award this mark if candidate states other coordinates inside	A1
		the required range.	[5]
			7 marks

5. A curve is described by the equation

$$x^3 - 4y^2 = 12xy$$

(a) Find the coordinates of the two points on the curve where x = -8.

(3)

(b) Find the gradient of the curve at each of these points.

(6)

a)
$$x = -8$$
 $(-8)^3 - 4y^2 = 12(-8)y$

$$(-8,8)$$
 $(-8,16)$

b) Implicit differentiation.

dy dx at (-8		(-8)2-12(8 12(-8)+8(8)			
and	21- (-8,16)	$= \frac{3(-8)^2 - 12}{12(-8) + 8}$ $= 0.$	(16)		

- 1. A curve C has the equation $y^2 3y = x^3 + 8$.
 - (a) Find $\frac{dy}{dx}$ in terms of x and y.

(4)

(b) Hence find the gradient of C at the point where y = 3.

(3)

a) Implicit differentiation

$$\frac{dy}{dx} = \frac{3x^2}{2y-3}$$

b) When y=3 substitute into original equation to find se=

Substitute x = -2 and y = 3 into dy

$$\frac{dy}{dx} = \frac{3(-2)^2}{2(3)-3}$$

3. The curve C has equation

$$\cos 2x + \cos 3y = 1$$
, $-\frac{\pi}{4} \le x \le \frac{\pi}{4}$, $0 \le y \le \frac{\pi}{6}$.

(a) Find $\frac{dy}{dx}$ in terms of x and y.

(3)

The point *P* lies on *C* where $x = \frac{\pi}{6}$.

(b) Find the value of y at P.

(3)

(c) Find the equation of the tangent to C at P, giving your answer in the form $ax + by + c\pi = 0$, where a, b and c are integers.

(3)

$$ccs(2\pi/6) + ccs37 = 1$$
 $ccs34 = 1/2$
 $34 = \pi/3$
 $4 = \pi/9$

(c) At
$$x=\pi/6$$
 dy = -2
J dx $\frac{7}{3}$ $y-\pi/9=-\frac{2}{3}(x-\pi/6)$
substitute into $\frac{\pi}{3}$

N35382A

- 1. The curve C has the equation $2x + 3y^2 + 3x^2y = 4x^2$. The point P on the curve has coordinates (-1, 1).
 - (a) Find the gradient of the curve at P.

(5)

(b) Hence find the equation of the normal to C at P, giving your answer in the form ax+by+c=0, where a, b and c are integers.

(3)

Differentiale W.t. X

$$y-1 = \frac{9}{4}(x-(-1))$$

ion Scheme				
$2x + \left(2x\frac{\mathrm{d}y}{\mathrm{d}x} + 2y\right) - 6y\frac{\mathrm{d}y}{\mathrm{d}x} = 0$	M1 (A1) A1			
$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Rightarrow x + y = 0 \qquad \qquad \text{or equivalent } $	M1			
Eliminating either variable and solving for at least one value of x or y. $y^2 - 2y^2 - 3y^2 + 16 = 0$ or the same equation in x	M1			
$y = \pm 2$ or $x = \pm 2$	A1			
(2,-2),(-2,2)	A1			
	[7]			
Note: $\frac{dy}{dx} = \frac{x+y}{3y-x}$				
Alternative				
$x = \frac{2x \pm \sqrt{(16x^2 + 192)}}{x^2 + 192}$				
0				
	M1 A1± A1			
$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Rightarrow \frac{8x}{\sqrt{\left(16x^2 + 192\right)}} = \pm 1$	M1			
$64x^2 = 16x^2 + 192$				
$x = \pm 2$	M1 A1			
(2,-2),(-2,2)	A1			
	[7]			
	$2x + \left(2x\frac{dy}{dx} + 2y\right) - 6y\frac{dy}{dx} = 0$ $\frac{dy}{dx} = 0 \implies x + y = 0 \qquad \text{or equivalent}$ Eliminating either variable and solving for at least one value of x or y . $y^2 - 2y^2 - 3y^2 + 16 = 0 \qquad \text{or the same equation in } x$ $y = \pm 2 \qquad \text{or } x = \pm 2$ $(2, -2), (-2, 2)$ Note: $\frac{dy}{dx} = \frac{x + y}{3y - x}$ Alternative $3y^2 - 2xy - (x^2 + 16) = 0$ $y = \frac{2x \pm \sqrt{(16x^2 + 192)}}{6}$ $\frac{dy}{dx} = \frac{1}{3} \pm \frac{1}{3} \cdot \frac{8x}{\sqrt{(16x^2 + 192)}}$ $\frac{dy}{dx} = 0 \implies \frac{8x}{\sqrt{(16x^2 + 192)}} = \pm 1$ $64x^2 = 16x^2 + 192$			

Question Number	Scheme		Marks
Aliter 1.	$\left\{\frac{\cancel{X}\cancel{X}}{\cancel{X}\cancel{X}}\times\right\} 6x\frac{dx}{dy} - 4y + 2\frac{dx}{dy} - 3 = 0$	Differentiates implicitly to include either $\pm kx \frac{dx}{dy}$ or $\pm 2 \frac{dx}{dy}$. (Ignore $\left(\frac{dx}{dy} = \right)$.) Correct equation.	M1 A1
Way 2	$\left\{ \frac{dx}{dy} = \frac{4y+3}{6x+2} \right\}$	not necessarily required.	
	At (0, 1), $\frac{dx}{dy} = \frac{4+3}{0+2} = \frac{7}{2}$	Substituting x = 0 & y = 1 into an equation involving $\frac{dx}{dy}$; to give $\frac{7}{2}$	dM1; A1 cso
	Hence m(N) = $-\frac{7}{2}$ or $\frac{-1}{\frac{2}{7}}$	Uses m(T) or $\frac{dx}{dy}$ to 'correctly' find m(N). Can be ft using "-1. $\frac{dx}{dy}$ ".	A1√ oe.
	Either N: $y-1 = -\frac{7}{2}(x-0)$ or N: $y = -\frac{7}{2}x + 1$	$y-1=m(x-0) \ \text{with}$ 'their tangent, $\frac{dx}{dy}$ or normal gradient'; or uses $y=mx+1$ with 'their tangent, $\frac{dx}{dy}$ or normal gradient';	M1;
	N: 7x + 2y - 2 = 0	Correct equation in the form $ax + by + c = 0$, where a, b and c are integers.	A1 oe cso
			7 marks

Question Number	Scheme		Marks
Aliter 1. Way 3	$2y^2 + 3y - 3x^2 - 2x - 5 = 0$		
	$\left(y + \frac{3}{4}\right)^2 - \frac{9}{16} = \frac{3x^2}{2} + x + \frac{5}{2}$ $y = \sqrt{\left(\frac{3x^2}{2} + x + \frac{49}{16}\right)} - \frac{3}{4}$		
	$\frac{dy}{dx} = \frac{1}{2} \left(\frac{3x^2}{2} + x + \frac{49}{16} \right)^{-\frac{1}{2}} (3x + 1)$	Differentiates using the chain rule; Correct expression for $\frac{dy}{dx}$.	
	At (0, 1), $\frac{dy}{dx} = \frac{1}{2} \left(\frac{49}{16} \right)^{-\frac{1}{2}} = \frac{1}{2} \left(\frac{4}{7} \right) = \frac{2}{7}$	Substituting x = 0 into an equation involving $\frac{dy}{dx}$; to give $\frac{2}{7}$ or $\frac{-2}{-7}$	dM1 A1 cso
	Hence $m(\mathbf{N}) = -\frac{7}{2}$	Uses $m(T)$ to 'correctly' find $m(N)$. Can be ft from "their tangent gradient".	A1√
	Either N : $y-1 = -\frac{7}{2}(x-0)$	y-1 = m(x-0) with 'their tangent or normal gradient';	NA4
	or N : $y = -\frac{2}{7}x + 1$	or uses $y = mx + 1$ with 'their tangent or normal gradient'	M1
	N: $7x + 2y - 2 = 0$	Correct equation in the form $'ax + by + c = 0'$, where a, b and c are integers.	A1 oe
			7 marks

Jan 06 June 06

June 2006 6666 Pure Mathematics C4 Mark Scheme

Question Number	Scheme		Marks
1.	$\left\{\frac{\cancel{x}\cancel{x}}{\cancel{x}\cancel{x}}\times\right\} 6x - 4y\frac{dy}{dx} + 2 - 3\frac{dy}{dx} = 0$	Differentiates implicitly to include either $\pm ky\frac{dy}{dx} \text{ or } \pm 3\frac{dy}{dx} \text{ . (Ignore } \left(\frac{dy}{dx} = \right) \text{.)}$ Correct equation.	M1 A1
	$\left\{ \frac{dy}{dx} = \frac{6x+2}{4y+3} \right\}$	not necessarily required.	
	At (0, 1), $\frac{dy}{dx} = \frac{0+2}{4+3} = \frac{2}{7}$	Substituting x = 0 & y = 1 into an equation involving $\frac{dy}{dx}$; to give $\frac{2}{7}$ or $\frac{-2}{-7}$	dM1; A1 cso
	Hence m(N) = $-\frac{7}{2}$ or $\frac{-1}{\frac{2}{7}}$	Uses m(T) to 'correctly' find m(N). Can be ft from "their tangent gradient".	A1√ oe.
	Either N: $y-1 = -\frac{7}{2}(x-0)$ or N: $y = -\frac{7}{2}x + 1$	$y-1=m(x-0) \ with$ 'their tangent or normal gradient'; or uses $y=mx+1$ with 'their tangent or	M1;
	N: $7x + 2y - 2 = 0$	normal gradient';	A1 oe cso
			7 marks

Beware: $\frac{dy}{dx} = \frac{2}{7}$ does not necessarily imply the award of all the first four marks in this question.

So please ensure that you check candidates' initial differentiation before awarding the first A1 mark.

Beware: The final accuracy mark is for completely correct solutions. If a candidate flukes the final line then they must be awarded A0.

Beware: A candidate finding an m(T) = 0 can obtain A1ft for m(N) = ∞ , but obtains M0 if they write $y-1=\infty(x-0)$. If they write, however, N: x=0, then can score M1.

Beware: A candidate finding an $m(T) = \infty$ can obtain A1ft for m(N) = 0, and also obtains M1 if they write y - 1 = 0(x - 0) or y = 1.

Beware: The final cso refers to the whole question.

6666/01 Core Maths C4

2

June 2006 Advanced Subsidiary/Advanced Level in GCE Mathematics

- 4. A curve has equation $3x^2 y^2 + xy = 4$. The points P and Q lie on the curve. The gradient of the tangent to the curve is $\frac{8}{3}$ at P and at Q.
 - (a) Use implicit differentiation to show that y 2x = 0 at P and at Q.
 - (b) Find the coordinates of P and Q.

(3)

a)
$$6x - 2y dy + (y + x dy) = 0$$

$$dy = \frac{8}{3}$$

Question/Montinued

Q3

4. The curve C has the equation $ye^{-2x} = 2x + y^2$.

(a)	Find	$\frac{\mathrm{d}y}{\mathrm{d}x}$	in	terms	of x	and y
-----	------	-----------------------------------	----	-------	------	-------

(5)

The point P on C has coordinates (0, 1).

(b) Find the equation of the normal to C at P, giving your answer in the form ax + by + c = 0, where a, b and c are integers.

(4)

Implicit differentiation

e-2x dy - 2 ye-2x = 2 + 27 dy

(collect dy e-2x dy -2y dy = 2 + 2y e-2x

dx dx dx

on one side)

dy (e-1x - 2y) = 2 + 2 ye-2x

dr = 2+27e-22

b) P(C,1) dy = -4

tangent.

dy = 1

 $(y-1) = \frac{1}{4}(x-c)$

y = /4xc + 1

x-4y+4=0

$$2^x + y^2 = 2xy$$

Find the exact value of $\frac{dy}{dx}$ at the point on C with coordinates (3, 2).

(7)

$$M = (3,2)$$

$$\frac{-3}{-2} \qquad \frac{dy}{dx} = \frac{2^3 \ln 2 - 4}{6 - 4}$$

Leave

5. Find the gradient of the curve with equation

$$\ln y = 2x \ln x, \quad x > 0, \ y > 0$$

at the point on the curve where x = 2. Give your answer as an exact value.

(7)

$$\frac{1}{y} \frac{dy}{dx} = 2 \ln x + 2x \left(\frac{1}{5c}\right)$$

1 product rule

1 dy = 2 lnx + 2

At x=2 1 dy = 21/2 + 2

needes

from original lay = 2xlx

at x=2 lny=4ln2

Iny = In2"

Iny = In16

y = 16

substitute

y=16 1 d

1 dy = 21n2 +2

dy = 16 (212 +2)

Leave blank

5. The curve C has equation

$$16y^3 + 9x^2y - 54x = 0$$

(a) Find $\frac{dy}{dx}$ in terms of x and y.

(5)

(b) Find the coordinates of the points on C where $\frac{dy}{dx} = 0$.

(7)

a) Find dy

(b)
$$\frac{54 - 18xy}{48y^2 + 9x^2} = 0$$

$$y = \frac{3}{x}$$

Substitute y= 1/2e into original equation.

Leave blank

Question 5 continued

$$16\left(\frac{3}{x}\right)^{3} + 9x^{2}\left(\frac{3}{x}\right) - 54x = 0$$

$$\frac{432}{x^3}$$
 + 27xc - 54xc = 0

$$\frac{432}{x^3} - 21x = 0$$

multiply by x3

$$x = \pm 2$$

$$(2, \frac{3}{2})$$
 and $(-2, \frac{-3}{2})$

A curve is described by the equation

Leave blank

 $x^2 + 4xy + y^2 + 27 = 0$

$$x^2 + 4xy + y^2 + 27 = 0$$

(a) Find $\frac{dy}{dx}$ in terms of x and y.

A point Q lies on the curve.

(5)

The tangent to the curve at Q is parallel to the y-axis.

Given that the x coordinate of Q is negative,

(b) use your answer to part (a) to find the coordinates of Q.

25c + 45cdy + 4y + 2y dy = 0

4x dy + 2y dy = -2x-4y

 $\frac{dy}{dx} = -\frac{2x - 4y}{4x + 2y} = -\frac{2(x + 2y)}{2(2x + 2y)}$

 $\frac{dy}{dx} = -\frac{x+2y}{2x+y}$

b) as tangent parallel to y-axis, gradient of normal through Q is zer

gradient of tangent = - x+24 se gradient of normal = 200 ty

 $0 = \frac{2x+y}{x+2y} = \frac{2x+y=0}{y=-20c}$

75 continued

Sub y = -2x in curve equation $x^{2} + 4x(-2x) + (-2x)^{2} + 27 = 0$ $x^{2} - 8x^{2} + 4x^{2} + 27 = 0$ $-3x^{2} + 27 = 0$ $3x^{2} = 27$ $x^{2} = 27$ $x^{2} = 3 = 9$ x = 3 = 3 = 3Part a) says x - coord of a is negative y = -2x - 3 y = 6Q is (-3,6)