9.

Figure 2

Figure 2 shows part of the curve C with equation

$$y = (x - 1)(x^2 - 4)$$
.

The curve cuts the x-axis at the points P, (1, 0) and Q, as shown in Figure 2.

(a) Write down the x-coordinate of P, and the x-coordinate of Q.

(2)

(b) Show that $\frac{dy}{dx} = 3x^2 - 2x - 4$.

(3)

(c) Show that y = x + 7 is an equation of the tangent to C at the point (-1, 6).

(2)

The tangent to C at the point R is parallel to the tangent at the point (-1, 6).

(d) Find the exact coordinates of R.

(5)

The curve C has equation y = f(x), $x \ne 0$, and the point P(2, 1) lies on C. Given that

$$f'(x) = 3x^2 - 6 - \frac{8}{x^2} ,$$

(a) find f(x).

(5)

(b) Find an equation for the tangent to C at the point P, giving your answer in the form y = mx + c, where m and c are integers.

-		¥	
			•

- 8. The curve C has equation $y = 4x + 3x^{\frac{3}{2}} 2x^2$, x > 0.
 - (a) Find an expression for $\frac{dy}{dx}$.

(3)

(b) Show that the point P(4, 8) lies on C.

(1)

(c) Show that an equation of the normal to C at the point P is

$$3y = x + 20$$
.

(4)

The normal to C at P cuts the x-axis at the point Q.

(d) Find the length PQ, giving your answer in a simplified surd form.

(3)

9. The curve C has equation y = f(x), x > 0, and $f'(x) = 4x - 6\sqrt{x} + \frac{8}{x^2}$.

Given that the point P(4, 1) lies on C,

(a) find f(x) and simplify your answer.

(6)

(b) Find an equation of the normal to C at the point P(4, 1).

(4)

.

11. The curve C has equation

$$y=9-4x-\frac{8}{x}, x>0$$
.

The point P on C has x-coordinate equal to 2.

(a) Show that the equation of the tangent to C at the point P is y = 1 - 2x.

(6)

(b) Find an equation of the normal to C at the point P.

(3)

The tangent at P meets the x-axis at A and the normal at P meets the x-axis at B.

(c) Find the area of triangle APB.

*****	******************************
L	eave
b	lank

11. The curve C has equation

$$y = \frac{1}{2}x^3 - 9x^{\frac{3}{2}} + \frac{8}{x} + 30, \quad x > 0$$

(a) Find $\frac{dy}{dx}$.

(4)

(b) Show that the point P(4,-8) lies on C.

(2)

(c) Find an equation of the normal to C at the point P, giving your answer in the form ax + by + c = 0, where a, b and c are integers.

(6)

10.

Leave blank

Figure 2

Figure 2 shows a sketch of the curve C with equation

$$y = 2 - \frac{1}{x}, \quad x \neq 0$$

The curve crosses the x-axis at the point A.

(a) Find the coordinates of A.

(1)

(b) Show that the equation of the normal to C at A can be written as

$$2x + 8y - 1 = 0$$

(6)

The normal to C at A meets C again at the point B, as shown in Figure 2.

(c) Find the coordinates of B.

- 9. The curve C has equation $y = kx^3 x^2 + x 5$, where k is a constant.
 - (a) Find $\frac{dy}{dx}$.

(2)

The point A with x-coordinate $-\frac{1}{2}$ lies on C. The tangent to C at A is parallel to the line with equation 2y - 7x + 1 = 0.

Find

(b) the value of k,

(4)

(c) the value of the y-coordinate of A.

(2)

....

18

10. The curve C with equation y = f(x), $x \ne 0$, passes through the point $(3, 7\frac{1}{2})$.

Given that $f'(x) = 2x + \frac{3}{x^2}$,

(a) find f(x).

(5)

(b) Verify that f(-2) = 5.

(1)

(c) Find an equation for the tangent to C at the point (-2, 5), giving your answer in the form ax + by + c = 0, where a, b and c are integers.

N 2 3 5			
---------	--	--	--

10. The curve C has equation $y = x^2(x-6) + \frac{4}{x}$, x > 0.

The points P and Q lie on C and have x-coordinates 1 and 2 respectively.

(a) Show that the length of PQ is $\sqrt{170}$.

(4)

(b) Show that the tangents to C at P and Q are parallel.

(5)

(c) Find an equation for the normal to C at P, giving your answer in the form ax + by + c = 0, where a, b and c are integers.

(4)

18

11. The curve C has equation y = f(x), x > 0, where

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x - \frac{5}{\sqrt{x}} - 2$$

Given that the point P(4, 5) lies on C, find

(a) f(x),

(5)

(b) an equation of the tangent to C at the point P, giving your answer in the form ax+by+c=0, where a, b and c are integers.

	•
	18 [®] 2
	×.
A management of the second of	

The line <i>l</i> is perpendicular to	PQ and passes through the mid-point of PQ .
Find an equation for <i>l</i> , giving are integers.	g your answer in the form $ax + by + c = 0$, where a, b and c
are integers.	(5)

5.	The	line	1.	has	equation	$\nu =$	-2x +	3
	1110	TITLE	61	1145	equation	V -	- 4A T	

The line l_2 is perpendicular to l_1 and passes through the point (5, 6).

(a) Find an equation for l_2 in the form ax + by + c = 0, where a, b and c are integers.

(3)

The line l_2 crosses the x-axis at the point A and the y-axis at the point B.

(b) Find the x-coordinate of A and the y-coordinate of B.

(2)

Given that O is the origin,

(c) find the area of the triangle *OAB*.

(2)

11. The curve C has equation

$$y = 2x - 8\sqrt{x} + 5, \quad x \geqslant 0$$

(a) Find $\frac{dy}{dx}$, giving each term in its simplest form.

(3)

The point P on C has x-coordinate equal to $\frac{1}{4}$

(b) Find the equation of the tangent to C at the point P, giving your answer in the form y = ax + b, where a and b are constants.

(4)

The tangent to C at the point Q is parallel to the line with equation 2x - 3y + 18 = 0

(c) Find the coordinates of Q.

(5)

Leave blank

11.

Figure 2

Figure 2 shows a sketch of the curve H with equation $y = \frac{3}{x} + 4$, $x \neq 0$.

(a) Give the coordinates of the point where H crosses the x-axis.

(1)

(b) Give the equations of the asymptotes to H.

(2)

(c) Find an equation for the normal to H at the point P(-3, 3).

(5)

This normal crosses the x-axis at A and the y-axis at B.

(d) Find the length of the line segment AB. Give your answer as a surd.

(3)

4	
_	