

$$x^2 + 2x + 3 \equiv (x + a)^2 + b.$$

(a) Find the values of the constants a and b.

(2)

(b) In the space provided below, sketch the graph of $y = x^2 + 2x + 3$, indicating clearly the coordinates of any intersections with the coordinate axes.

(3)

(c) Find the value of the discriminant of $x^2 + 2x + 3$. Explain how the sign of the discriminant relates to your sketch in part (b).

(2)

The equation $x^2 + kx + 3 = 0$, where k is a constant, has no real roots.

(d) Find the set of possible values of k, giving your answer in surd form.

(4)	Find the set of possible values of k .	
		(4)
		e in excision to
		1
· · · · · · · · · · · · · · · · · · ·		

8. The equation

$$x^2 + kx + 8 = k$$

has no real solutions for x.

(a) Show that k satisfies $k^2 + 4k - 32 < 0$.

(3)

(b) Hence find the set of possible values of k.

1-11-7-20-1			

7.	The	e equation $kx^2 + 4x + (5 - k) = 0$, where k is a constant, has 2 different real x.	solutions
	(a)	Show that k satisfies	
	(-)	$k^2 - 5k + 4 > 0$.	
			(3)
	(b)	Hence find the set of possible values of k .	
	(0)	Trefee find the set of possible values of k.	(4)

- 8. The equation $x^2 + (k-3)x + (3-2k) = 0$, where k is a constant, has two distinct real roots.
 - (a) Show that k satisfies

$$k^2 + 2k - 3 > 0$$

(3)

(b) Find the set of possible values of k.

14			
14			
	1	1	ú
		ŧ	۷

- 5. The curve C has equation y = x(5-x) and the line L has equation 2y = 5x + 4
 - (a) Use algebra to show that C and L do not intersect.

(4)

(b) In the space on page 11, sketch C and L on the same diagram, showing the coordinates of the points at which C and L meet the axes.

(4)

10

	Given that the equation $2qx^2 + qx - 1 = 0$, where q is a constant, has no real roots,
	(a) show that $q^2 + 8q < 0$.
	(2)
	(b) Hence find the set of possible values of q .
	(3)
-	
-	
_	
-	
-	
	•

Find the value of p .	(4)
	V

8. The equation $x^2 + 2px + (3p + 4) = 0$), where <i>p</i> 19	s a positive constant.	has equal roo	ots.
--	----------------------	------------------------	---------------	------

(a) Find the value of p.

(4)

(b) For this value of p, solve the equation
$$x^2 + 2px + (3p + 4) = 0$$
.

(2)

- 7. The equation $x^2 + kx + (k+3) = 0$, where k is a constant, has different real roots.
 - (a) Show that $k^2 4k 12 > 0$.

(2)

(b) Find the set of possible values of k.

(a) Show that $x^2 + 6x + 11$ can be written as

$$(x+p)^2+q$$

where p and q are integers to be found.

(2)

(b) In the space at the top of page 7, sketch the curve with equation $y = x^2 + 6x + 11$, showing clearly any intersections with the coordinate axes.

(2)

(c) Find the value of the discriminant of $x^2 + 6x + 11$

400 AM (400 AM			

(2)

7.

$$f(x) = x^2 + (k+3)x + k$$

where k is a real constant.

(a) Find the discriminant of f(x) in terms of k.

(2)

(b) Show that the discriminant of f(x) can be expressed in the form $(k+a)^2 + b$, where a and b are integers to be found.

(2)

(c) Show that, for all values of k, the equation f(x) = 0 has real roots.

(2)

	The second secon		

$$4x - 5 - x^2 = q - (x + p)^2$$

where p and q are integers.

(a) Find the value of p and the value of q.

(3)

(b) Calculate the discriminant of $4x - 5 - x^2$

(2)

(c) On the axes on page 17, sketch the curve with equation $y = 4x - 5 - x^2$ showing clearly the coordinates of any points where the curve crosses the coordinate axes.

(3)

=1 Jan 2013

(3)

1	ſ	6	٦	
	L	ŧ	J	

2		1100					,		-	2		
$4x^2$	+	8x	+	3	\equiv	a	(x)	+	b)~	+	C

(a) Find the values of the constants a, b and c.

(3)

(b) On the axes on page 27, sketch the curve with equation $y = 4x^2 + 8x + 3$, showing clearly the coordinates of any points where the curve crosses the coordinate axes.

Question 10 continued	Leave blank
<i>y</i>	
O	

10. Given the simultaneous equations

$$2x + y = 1$$
$$x^2 - 4ky + 5k = 0$$

where k is a non zero constant,

(a) show that

$$x^2 + 8kx + k = 0$$

(2)

Given that $x^2 + 8kx + k = 0$ has equal roots,

(b) find the value of k.

(3)

(c) For this value of k, find the solution of the simultaneous equations.

(3)
