2.	The sequence	of positive	numbers u_1 ,	u_2 ,	u_3 ,	 is	given	by:

		Corn.	-12	
71	=	(11 -	$(-3)^2$,	7/1
un+		un	J),	u_1

(a) Find u_2 , u_3 and u_4 .

(3)

(b) Write down the value of u_{20} .

(1)

Q2

(Total 4 marks)

- 7. On Alice's 11th birthday she started to receive an annual allowance. The first annual allowance was £500 and on each following birthday the allowance was increased by £200.
 - (a) Show that, immediately after her 12th birthday, the total of the allowances that Alice had received was £1200.

(1)

(b) Find the amount of Alice's annual allowance on her 18th birthday.

(2)

(c) Find the total of the allowances that Alice had received up to and including her 18th birthday.

(3)

When the total of the allowances that Alice had received reached £32 000 the allowance stopped.

(d) Find how old Alice was when she received her last allowance.

(7)

	ome sticks that following 3 rov		iengui. She arran	ges them in squ	iares and has	
Row 1	0					
Row 2	00					
Row 3	000					
		are required to make econd row and in				
		n terms of n_i , for the nares in the n th row		s required to ma	ake a similar (3)	
		quares following the has completed		She makes 4 so	quares in the	NAME AND ADDRESS OF THE PARTY O
(b) Find	the total numbe	er of sticks Ann use	es in making these	e 10 rows.	(3)	
		icks. Given that A			plete k rows	
but does i	not have suffici		lete the $(k+1)$ th re		plete k rows (4)	
but does it	not have suffici	ent sticks to compl	lete the $(k+1)$ th re		(4)	
but does it	not have suffici that k satisfies	ent sticks to compl	lete the $(k+1)$ th re			
but does it	not have suffici that k satisfies	ent sticks to compl	lete the $(k+1)$ th re		(4)	
but does it	not have suffici that k satisfies	ent sticks to compl	lete the $(k+1)$ th re		(4)	
but does it	not have suffici that k satisfies	ent sticks to compl	lete the $(k+1)$ th re		(4)	
but does it	not have suffici that k satisfies	ent sticks to compl	lete the $(k+1)$ th re		(4)	
but does it	not have suffici that k satisfies	ent sticks to compl	lete the $(k+1)$ th re		(4)	
but does it	not have suffici that k satisfies	ent sticks to compl	lete the $(k+1)$ th re		(4)	
but does it	not have suffici that k satisfies	ent sticks to compl	lete the $(k+1)$ th re		(4)	
but does it	not have suffici that k satisfies	ent sticks to compl	lete the $(k+1)$ th re		(4)	

-					1
7.	A	sequence	18	given	bv:
/ •	11	sequence	13	SIVOII	Uy

$$x_1 = 1,$$

 $x_{n+1} = x_n(p + x_n),$

where p is a constant $(p \neq 0)$.

(a) Find x_2 in terms of p.

(1)

(b) Show that $x_3 = 1 + 3p + 2p^2$.

(2)

Given that $x_3 = 1$,

(c) find the value of p,

(3)

(d) write down the value of x_{2008} .

(2)

(b) Find the value of r.

9.	The first term of an arithmetic series is a and the common difference is d .		blani
	The 18th term of the series is 25 and the 21st term of the series is $32\frac{1}{2}$.		
	(a) Use this information to write down two equations for a and d .		
		(2)	
	(b) Show that $a = -17.5$ and find the value of d.	(2)	
	The sum of the first n terms of the series is 2750.	(2)	
	(c) Show that n is given by		
	$n^2 - 15n = 55 \times 40.$		
		(4)	
	(d) Hence find the value of n.		
		(3)	
		•	

$$a_1 = 2$$

 $a_{n+1} = 3a_n - c$

where c is a constant.

(a) Find an expression for a_2 in terms of c.

(1)

Given that $\sum_{i=1}^{3} a_i = 0$

(b) find the value of c.

ó.	An arithmetic sequence has first term a and common difference d . The sum of the ferms of the sequence is 162.	irst 10
	(a) Show that $10a + 45d = 162$	
	(4)	(2)
	Given also that the givth term of the acqueres is 17	
	Given also that the sixth term of the sequence is 17,	
	(b) write down a second equation in a and d ,	
		(1)
	(c) find the value of a and the value of d.	
		(4)
-		

		on ongo on on outside

4. A sequence $x_1, x_2, x_3,...$ is defined by

$$x_1 = 1$$

$$x_{n+1} = ax_n + 5, \qquad n \geqslant 1$$

where a is a constant.

(a) Write down an expression for x_2 in terms of a.

(1)

(b) Show that $x_3 = a^2 + 5a + 5$

(2)

Given that $x_3 = 41$

(c) find the possible values of a.

9.	A company offers two salary schemes for a	10-year period,	Year 1	to Year	10 inclusive.
----	---	-----------------	--------	---------	---------------

Scheme 1: Salary in Year 1 is $\pounds P$.

Salary increases by £(2T) each year, forming an arithmetic sequence.

Scheme 2: Salary in Year 1 is $\pounds(P + 1800)$.

Salary increases by $\pounds T$ each year, forming an arithmetic sequence.

(a) Show that the total earned under Salary Scheme 1 for the 10-year period is

£
$$(10P + 90T)$$

(2)

For the 10-year period, the total earned is the same for both salary schemes.

(b) Find the value of T.

(4)

For this value of T, the salary in Year 10 under Salary Scheme 2 is £29 850

(c) Find the value of P.

$$x_1 = 1$$
,

$$x_{n+1} = ax_n - 3, \ n \ge 1,$$

where a is a constant.

(a) Find an expression for x_2 in terms of a.

(1)

(b) Show that $x_3 = a^2 - 3a - 3$.

(2)

Given that $x_3 = 7$,

(c) find the possible values of a.

7.	Sue is training for a marathon. Her training includes a run every Saturday starting wirun of 5 km on the first Saturday. Each Saturday she increases the length of her run fithe previous Saturday by 2 km.	
	(a) Show that on the 4th Saturday of training she runs 11 km.	
		(1)
	(b) Find an expression, in terms of <i>n</i> , for the length of her training run on the Saturday.	
		(2)
	(c) Show that the total distance she runs on Saturdays in n weeks of training is $n(n+4)$	km. (3)
	On the <i>n</i> th Saturday Sue runs 43 km.	
	(d) Find the value of n .	(2)
	(A) Di 1d (A) I I (A) (A) I (A)	
	(e) Find the total distance, in km, Sue runs on Saturdays in <i>n</i> weeks of training.	(2)
		Autoral Andreas
-		

mette ministr		
	•	
-		
-	,	
-		

5.	A 40-year building programme for new houses began in Oldtown in the year 1951 (Year 1) and finished in 1990 (Year 40).				
	The numbers of houses built each year form an arithmetic sequence with first term a and common difference d .				
	Given that 2400 new houses were built in 1960 and 600 new houses were built in 1990, find				
	(a) the value of d , (3)				
	(b) the value of a , (2)				
	(c) the total number of houses built in Oldtown over the 40-year period. (3)				
_					

$$a_1 = k$$

$$a_{n+1}=2a_n-7, \qquad n\geqslant 1,$$

where k is a constant.

(a) Write down an expression for a_2 in terms of k.

(1)

(b) Show that $a_3 = 4k - 21$.

(2)

Given that $\sum_{r=1}^{4} a_r = 43$,

(c) find the value of k.

(4)

$$a_1 = 3$$
,

$$a_{n+1}=3a_n-5, \quad n\geqslant 1.$$

(a) Find the value of a_2 and the value of a_3 .

(2)

(b) Calculate the value of $\sum_{r=1}^{5} a_r$.

An athlete prepares for a race by completing a practice rudays. On each day after the first day, he runs further than he lengths of his 11 practice runs form an arithmetic sequence common difference $d \text{ km}$.	ran on the previous day. The					
He runs 9 km on the 11th day, and he runs a total of 77 km over the 11 day period.						
Find the value of a and the value of d .						
The same value of a land and value of a.	(7)					
	*					
	3					
	•					
	*					

Leave blank

4. A girl saves money over a period of 200 weeks. She saves 5p in Week 1, 7p in Week 2, 9p in Week 3, and so on until Week 200. Her weekly savings form an arithmetic sequence.

(a) Find the amount she saves in Week 200.

(3)

(b) Calculate her total savings over the complete 200 week period.

$$a_1 = k$$
,

$$a_{n+1} = 3a_n + 5, \qquad n \geqslant 1,$$

where k is a positive integer.

(a) Write down an expression for a_2 in terms of k.

(1)

(b) Show that $a_3 = 9k + 20$.

(2)

- (c) (i) Find $\sum_{r=1}^{4} a_r$ in terms of k.
 - (ii) Show that $\sum_{r=1}^{4} a_r$ is divisible by 10.

5. A sequence of positive numbers is defined by

$$a_{n+1} = \sqrt{(a_n^2 + 3)}, \quad n \geqslant 1,$$

 $a_1 = 2$

(a) Find a_2 and a_3 , leaving your answers in surd form.

(2)

(b) Show that $a_5 = 4$

(2)

9. A farmer has a pay scheme to keep fruit pickers working throughout the 30 day season. He pays £a for their first day, £(a+d) for their second day, £(a+2d) for their third day, and so on, thus increasing the daily payment by £d for each extra day they work.

A picker who works for all 30 days will earn £40.75 on the final day.

(a) Use this information to form an equation in a and d.

(2)

A picker who works for all 30 days will earn a total of £1005

(b) Show that 15(a+40.75) = 1005

(2)

(c) Hence find the value of a and the value of d.

$$a_1 = k$$
,
 $a_{n+1} = 5a_n + 3$, $n \ge 1$,

where k is a positive integer.

(a) Write down an expression for a_2 in terms of k.

(1)

(b) Show that $a_3 = 25k + 18$.

(2)

- (c) (i) Find $\sum_{r=1}^{4} a_r$ in terms of k, in its simplest form.
 - (ii) Show that $\sum_{r=1}^{4} a_r$ is divisible by 6.

9. (a) Calculate the sum of all the even numbers from 2 to 100 inclusive,

(3)

(b) In the arithmetic series

$$k + 2k + 3k + \dots + 100$$

k is a positive integer and k is a factor of 100.

- (i) Find, in terms of k, an expression for the number of terms in this series.
- (ii) Show that the sum of this series is

$$50 + \frac{5000}{k}$$

(4)

(c) Find, in terms of k, the 50th term of the arithmetic sequence

$$(2k+1)$$
, $(4k+4)$, $(6k+7)$,,

giving your answer in its simplest form.

(2)

5. A sequence of numbers $a_1, a_2, a_3 \dots$ is defined by

$$a_1 = 3$$

$$a_{n+1} = 2a_n - c \qquad (n \geqslant 1)$$

where c is a constant.

(a) Write down an expression, in terms of c, for a_2

(1)

(b) Show that $a_3 = 12 - 3c$

(2)

Given that $\sum_{i=1}^{4} a_i \ge 23$

(c) find the range of values of c.

Leav	/e
blan	k

6.	A	b	оу	saves	S	ome	m	oney	ov	er a	р	erio	d of	60	weeks	s. He	saves	10p	in	week	1,
		1						week	3	and	so	on	until	we	ek 60.	His	weekly	savi	ngs	form	an
	ari	ith	me	etic sec	que	ence.															

(a) Find how much he saves in week 15

(2)

(b) Calculate the total amount he saves over the 60 week period.

(3)

The boy's sister also saves some money each week over a period of m weeks. She saves 10p in week 1, 20p in week 2, 30p in week 3 and so on so that her weekly savings form an arithmetic sequence. She saves a total of £63 in the m weeks.

(c) Show that

$$m(m+1) = 35 \times 36$$

(4)

(d) Hence write down the value of m.

(1)

4. A sequence u_1, u_2, u_3, \dots satisfies

$$u_{n+1} = 2u_n - 1, \ n \geqslant 1$$

Given that $u_2 = 9$,

(a) find the value of u_3 and the value of u_4 ,

(2)

(b) evaluate $\sum_{r=1}^{4} u_r$.

(3)

6

7.	Lewis played a game of space invaders. He scored points for each spaceship that he captured.
	Lewis scored 140 points for capturing his first spaceship.
	He scored 160 points for capturing his second spaceship, 180 points for capturing his third spaceship, and so on.
	The number of points scored for capturing each successive spaceship formed an arithmetic sequence.
	(a) Find the number of points that Lewis scored for capturing his 20th spaceship. (2)
	(b) Find the total number of points Lewis scored for capturing his first 20 spaceships. (3)
	Sian played an adventure game. She scored points for each dragon that she captured. The number of points that Sian scored for capturing each successive dragon formed an arithmetic sequence.
	Sian captured n dragons and the total number of points that she scored for capturing all n dragons was 8500.
	Given that Sian scored 300 points for capturing her first dragon and then 700 points for capturing her n th dragon,
	(c) find the value of n .
	(3)

$$a_1 = 4$$

 $a_{n+1} = k(a_n + 2), \quad \text{for } n \ge 1$

where k is a constant.

(a) Find an expression for a_2 in terms of k.

(1)

Given that $\sum_{i=1}^{3} a_i = 2$,

(b) find the two possible values of k.

(6)

7.	A company, which is making 200 mobile phones each week, plans to increase its production.
	The number of mobile phones produced is to be increased by 20 each week from 200 in week 1 to 220 in week 2, to 240 in week 3 and so on, until it is producing 600 in week N.
	(a) Find the value of N .
	(2)
	The company then plans to continue to make 600 mobile phones each week.
	(b) Find the total number of mobile phones that will be made in the first 52 weeks starting from and including week 1.
	(5)
7.000	
-	