

Figure 1

Figure 1 shows a sketch of the curve with equation y = f(x). The curve passes through the origin O and the points A(5,4) and B(-5,-4).

In separate diagrams, sketch the graph with equation

(a)
$$y = |f(x)|$$
,

(3)

(b)
$$y = f(|x|)$$
,

(3)

(c)
$$y = 2f(x+1)$$
.

(4)

On each sketch, show the coordinates of the points corresponding to A and B.

a)

6)

reflect intoxic for fluico

Leave blank

Figure 1

Figure 1 shows the graph of y = f(x), 1 < x < 9. The points T(3, 5) and S(7, 2) are turning points on the graph.

Sketch, on separate diagrams, the graphs of

(a)
$$y = 2f(x) - 4$$
,

(3)

(b)
$$y = |f(x)|$$
.

(3)

Indicate on each diagram the coordinates of any turning points on your sketch.

Lf(x) doubles y-coordinale

then -4 subtracts & from

y-coordinate.

x coordinate not affected

If(x)) reflects any points below ic-axis in x-axis

Figure 1

Figure 1 shows a sketch of the graph of y = f(x).

The graph intersects the y-axis at the point (0, 1) and the point A(2, 3) is the maximum turning point.

Sketch, on separate axes, the graphs of

- (i) y = f(-x) + 1,
- (ii) y = f(x+2) + 3,
- (iii) y = 2f(2x).

On each sketch, show the coordinates of the point at which your graph intersects the y-axis and the coordinates of the point to which A is transformed.

(11)

(9)

Figure 1

Figure 1 shows the graph of equation y = f(x).

The points P(-3, 0) and Q(2, -4) are stationary points on the graph.

Sketch, on separate diagrams, the graphs of

(a)
$$y = 3f(x+2)$$

(3)

Leave blank

(b)
$$y = |f(x)|$$

(3)

On each diagram, show the coordinates of any stationary points.

(a)

(b)

Figure 1

Figure 1 shows the graph of y = f(x), $x \in \mathbb{R}$,

The graph consists of two line segments that meet at the point P.

The graph cuts the y-axis at the point Q and the x-axis at the points (-3, 0) and R.

Sketch, on separate diagrams, the graphs of

(a)
$$y = |f(x)|$$
,
(b) $y = f(-x)$.

(2)

Given that f(x) = 2 - |x + 1|,

(c) find the coordinates of the points P, Q and R, (3)

(d) solve $f(x) = \frac{1}{2}x$. (5)

when
$$y = 0$$
 $0 = 2 - 1x + 11$
so $x = 1$

Maximum point graph is
$$f(x)=2$$

so $x=-1$

$$\mathbb{C} \ 2 - x - 1 = 1/2x \qquad \mathbb{C} \ 2 + x + 1 = 1/2x$$

$$1 = 3/2x \qquad 1/2x = -3$$

$$x = 2/3 \qquad x = -6$$

Figure 2

Figure 2 shows a sketch of part of the curve with equation y = f(x), $x \in \mathbb{R}$. The curve meets the coordinate axes at the points A(0,1-k) and $B(\frac{1}{2}\ln k,0)$, where k is a constant and k > 1, as shown in Figure 2.

On separate diagrams, sketch the curve with equation

(a)
$$y = |f(x)|,$$

(b)
$$y = f^{-1}(x)$$
. (2)

Show on each sketch the coordinates, in terms of k, of each point at which the curve meets or cuts the axes.

Given that $f(x) = e^{2x} - k$,

(c) state the range of f,

(1)

- (d) find $f^{-1}(x)$, (3)
- (e) write down the domain of f^{-1} .

(1)

Question 5 continued

Leave blank

CI)

reflect points below x -axis in x-axis

(b)

reflect in 4 =>0

(d)
$$y = e^{2x} - k$$

 $y + k = e^{2x}$
 $\ln(y + k) = 2x$
 $x = \ln(y + k)$
 $\frac{1}{2}$

F-1(20) = 1/2 la (x+k)

Figure 2

Figure 2 shows a sketch of the curve with the equation y = f(x), $x \in \mathbb{R}$.

The curve has a turning point at A(3, -4) and also passes through the point (0, 5).

(a) Write down the coordinates of the point to which A is transformed on the curve with equation

(i)
$$y = |f(x)|$$
,

(ii)
$$y = 2f(\frac{1}{2}x)$$
.

(4)

(b) Sketch the curve with equation y = f(|x|).

On your sketch show the coordinates of all turning points and the coordinates of the point at which the curve cuts the *y*-axis.

(3)

The curve with equation y = f(x) is a translation of the curve with equation $y = x^2$.

(c) Find f(x).

(2)

(d) Explain why the function f does not have an inverse.

(1)

· translate +44 +3 parallel to x-axis

$$y = (3(-3)^2 - 4)$$

(a) function f not a one to one mapping.

Leave blank

3.

Figure 1

Figure 1 shows part of the graph of y = f(x), $x \in \mathbb{R}$.

The graph consists of two line segments that meet at the point R(4,-3), as shown in Figure 1.

Sketch, on separate diagrams, the graphs of

(a)
$$y = 2f(x+4)$$
, shifted 4 units left
then y-direction $\times 2$ (3)

(b)
$$y = |f(-x)|$$
.

On each diagram, show the coordinates of the point corresponding to R.

Function
reflects part of
graph below
sc-axis $2(-4,5)^{3}/y=|f(-5c)|$

Figure 2

Figure 2 shows part of the curve with equation y = f(x)The curve passes through the points P(-1.5, 0) and Q(0, 5) as shown.

On separate diagrams, sketch the curve with equation

(a)
$$y = |f(x)|$$

(2)

Leave blank

(b)
$$y = f(|x|)$$

(2)

(c)
$$y = 2f(3x)$$

(3)

Indicate clearly on each sketch the coordinates of the points at which the curve crosses or meets the axes.

a)

(P

Figure 1

Figure 1 shows part of the curve with equation $y = f(x), x \in \mathbb{R}$.

The curve passes through the points Q(0,2) and P(-3,0) as shown.

(a) Find the value of ff(-3).

(2)

On separate diagrams, sketch the curve with equation

(b)
$$y = f^{-1}(x)$$
,

(2)

(c)
$$y = f(|x|) - 2$$
,

(2)

(d)
$$y = 2f\left(\frac{1}{2}x\right)$$
.

(3)

Indicate clearly on each sketch the coordinates of the points at which the curve crosses or meets the axes.

a) ff(-3) = f(0) = 2 (using diagram)

· then 2f(±x)

dowler y-cood

from 2

to 4.

2. Given that

$$f(x) = \ln x, \quad x > 0$$

sketch on separate axes the graphs of

- (i) y = f(x),
- (ii) y = |f(x)|,
- (iii) y = -f(x 4).

Show, on each diagram, the point where the graph meets or crosses the *x*-axis. In each case, state the equation of the asymptote.

In each case, state the equation of the asymptote. (7) y=f(x) asymptote oc=0